[Bugfix][TPU][V1] Fix recompilation (#15553)

Signed-off-by: NickLucche <nlucches@redhat.com>
This commit is contained in:
Nicolò Lucchesi 2025-03-27 20:15:06 +01:00 committed by GitHub
parent 46450b8d33
commit 4098b72210
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 15 additions and 74 deletions

View File

@ -32,7 +32,9 @@ docker run --privileged --net host --shm-size=16G -it \
&& echo TEST_5 \
&& python3 /workspace/vllm/examples/offline_inference/tpu.py \
&& echo TEST_6 \
&& pytest -s -v /workspace/vllm/tests/tpu/worker/test_tpu_model_runner.py" \
&& pytest -s -v /workspace/vllm/tests/tpu/worker/test_tpu_model_runner.py \
&& echo TEST_7 \
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py" \
# TODO: This test fails because it uses RANDOM_SEED sampling

View File

@ -1,7 +1,4 @@
# SPDX-License-Identifier: Apache-2.0
import tempfile
from time import time
import pytest
from vllm import LLM, envs
@ -15,60 +12,6 @@ if not envs.VLLM_USE_V1:
)
@pytest.mark.parametrize("model_name", ["D4nt3/Qwen2.5-two-layers"])
@pytest.mark.skipif(not current_platform.is_tpu(),
reason="This test needs a TPU")
def test_sampler_compilation(model_name: str, monkeypatch):
"""
Check that no recompilation happens despite changing sampling parameters.
We can't read XLA metrics from the engine process, hence we measure time.
"""
with tempfile.TemporaryDirectory() as temp_dir:
monkeypatch.setenv("VLLM_XLA_CACHE_PATH", temp_dir)
# Compiling model init may still take some time, enforce_eager to skip.
llm = LLM(model_name,
enforce_eager=True,
max_num_seqs=16,
max_model_len=1024,
gpu_memory_utilization=0.5)
prompts = [
"A robot may not injure a human being",
"It is only with the heart that one can see rightly;",
]
# First inference should be slow
sampling_params = SamplingParams(
temperature=0.7,
# top_p=0.6, # TODO too slow!
top_k=10,
min_p=0.2,
max_tokens=16)
s = time()
_ = llm.generate(prompts, sampling_params)
run1 = time() - s
# Second request with different params, but for which we
# compiled for in previous eager iteration.
sampling_params = SamplingParams(temperature=0.1,
top_k=12,
min_p=0.8,
max_tokens=24)
s = time()
_ = llm.generate(prompts, sampling_params)
run2 = time() - s
# Much faster after compiling
assert run1 * 0.1 > run2
print("TIMES", run1, run2)
# Third request with min_p set to "None". It will not trigger
# recompilation as a default 0 value will be used.
sampling_params = SamplingParams(max_tokens=24, temperature=0.0)
s = time()
_ = llm.generate(prompts, sampling_params)
run3 = time() - s
assert run1 * 0.1 > run3
print("TIMES", run1, run3)
@pytest.mark.parametrize("model_name", ["Qwen/Qwen2.5-1.5B-Instruct"])
@pytest.mark.skipif(not current_platform.is_tpu(),
reason="This test needs a TPU")
@ -77,13 +20,11 @@ def test_sampler_different(model_name: str):
Test significantly different sampling params to assert the model produces
different results.
"""
llm = LLM(
model_name,
enforce_eager=True,
max_num_seqs=1,
max_model_len=64,
# TODO: setting to 0.5 or it will go OOM
gpu_memory_utilization=0.5)
llm = LLM(model_name,
enforce_eager=False,
max_num_seqs=1,
max_model_len=512,
max_num_batched_tokens=512)
prompts = [
"Write a short story about a robot that dreams for the first time."
]

View File

@ -88,6 +88,7 @@ class TPUSupportedSamplingMetadata:
# Copy slice from CPU to corresponding TPU pre-allocated tensor.
# Pad value is the default one.
cpu_tensor[num_reqs:padded_num_reqs] = fill_val
# Subtle compilation: len(tpu_tensor) must be >= `padded_num_reqs`
tpu_tensor[:padded_num_reqs] = cpu_tensor[:padded_num_reqs]
# NOTE NickLucche The sync CPU-TPU graph we produce here must be
@ -101,13 +102,6 @@ class TPUSupportedSamplingMetadata:
copy_slice(input_batch.min_p_cpu_tensor, input_batch.min_p,
DEFAULT_SAMPLING_PARAMS["min_p"])
# copy_slice(input_batch.frequency_penalties_cpu_tensor,
# input_batch.frequency_penalties)
# copy_slice(input_batch.presence_penalties_cpu_tensor,
# input_batch.presence_penalties)
# copy_slice(input_batch.repetition_penalties_cpu_tensor,
# input_batch.repetition_penalties)
xm.mark_step()
xm.wait_device_ops()

View File

@ -88,6 +88,8 @@ class TPUModelRunner:
self.max_model_len = model_config.max_model_len
self.max_num_blocks_per_req = cdiv(self.max_model_len, self.block_size)
self.max_num_tokens = scheduler_config.max_num_batched_tokens
# InputBatch needs to work with sampling tensors greater than padding
# to avoid dynamic shapes. Also, avoid suboptimal alignment.
self.max_num_reqs = max(scheduler_config.max_num_seqs, MIN_NUM_SEQS)
# Model-related.
@ -788,6 +790,7 @@ class TPUModelRunner:
dummy_hidden = torch.randn((num_tokens, hsize),
device=device,
dtype=torch.bfloat16)
# Compile for [8, 16, .., 128,.., `self.max_num_reqs`]
while True:
indices = torch.zeros(
num_reqs_to_sample,
@ -804,7 +807,9 @@ class TPUModelRunner:
out = out.cpu()
if num_reqs_to_sample >= self.max_num_reqs:
break
num_reqs_to_sample *= 2
# Make sure to compile the `max_num_reqs` upper-limit case
num_reqs_to_sample = _get_padded_num_reqs_with_upper_limit(
num_reqs_to_sample + 1, self.max_num_reqs)
xm.wait_device_ops()
end = time.perf_counter()
logger.info("Compilation finished in in %.2f [secs].", end - start)
@ -897,7 +902,6 @@ class ModelWrapperV1(nn.Module):
return hidden_states
# @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
def sample_from_hidden(
self,
hidden_states: torch.Tensor,