mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-16 12:25:41 +08:00
[Bugfix][TPU][V1] Fix recompilation (#15553)
Signed-off-by: NickLucche <nlucches@redhat.com>
This commit is contained in:
parent
46450b8d33
commit
4098b72210
@ -32,7 +32,9 @@ docker run --privileged --net host --shm-size=16G -it \
|
||||
&& echo TEST_5 \
|
||||
&& python3 /workspace/vllm/examples/offline_inference/tpu.py \
|
||||
&& echo TEST_6 \
|
||||
&& pytest -s -v /workspace/vllm/tests/tpu/worker/test_tpu_model_runner.py" \
|
||||
&& pytest -s -v /workspace/vllm/tests/tpu/worker/test_tpu_model_runner.py \
|
||||
&& echo TEST_7 \
|
||||
&& pytest -s -v /workspace/vllm/tests/v1/tpu/test_sampler.py" \
|
||||
|
||||
|
||||
# TODO: This test fails because it uses RANDOM_SEED sampling
|
||||
|
||||
@ -1,7 +1,4 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
import tempfile
|
||||
from time import time
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm import LLM, envs
|
||||
@ -15,60 +12,6 @@ if not envs.VLLM_USE_V1:
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_name", ["D4nt3/Qwen2.5-two-layers"])
|
||||
@pytest.mark.skipif(not current_platform.is_tpu(),
|
||||
reason="This test needs a TPU")
|
||||
def test_sampler_compilation(model_name: str, monkeypatch):
|
||||
"""
|
||||
Check that no recompilation happens despite changing sampling parameters.
|
||||
We can't read XLA metrics from the engine process, hence we measure time.
|
||||
"""
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
monkeypatch.setenv("VLLM_XLA_CACHE_PATH", temp_dir)
|
||||
# Compiling model init may still take some time, enforce_eager to skip.
|
||||
llm = LLM(model_name,
|
||||
enforce_eager=True,
|
||||
max_num_seqs=16,
|
||||
max_model_len=1024,
|
||||
gpu_memory_utilization=0.5)
|
||||
prompts = [
|
||||
"A robot may not injure a human being",
|
||||
"It is only with the heart that one can see rightly;",
|
||||
]
|
||||
# First inference should be slow
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.7,
|
||||
# top_p=0.6, # TODO too slow!
|
||||
top_k=10,
|
||||
min_p=0.2,
|
||||
max_tokens=16)
|
||||
s = time()
|
||||
_ = llm.generate(prompts, sampling_params)
|
||||
run1 = time() - s
|
||||
|
||||
# Second request with different params, but for which we
|
||||
# compiled for in previous eager iteration.
|
||||
sampling_params = SamplingParams(temperature=0.1,
|
||||
top_k=12,
|
||||
min_p=0.8,
|
||||
max_tokens=24)
|
||||
s = time()
|
||||
_ = llm.generate(prompts, sampling_params)
|
||||
run2 = time() - s
|
||||
# Much faster after compiling
|
||||
assert run1 * 0.1 > run2
|
||||
print("TIMES", run1, run2)
|
||||
|
||||
# Third request with min_p set to "None". It will not trigger
|
||||
# recompilation as a default 0 value will be used.
|
||||
sampling_params = SamplingParams(max_tokens=24, temperature=0.0)
|
||||
s = time()
|
||||
_ = llm.generate(prompts, sampling_params)
|
||||
run3 = time() - s
|
||||
assert run1 * 0.1 > run3
|
||||
print("TIMES", run1, run3)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_name", ["Qwen/Qwen2.5-1.5B-Instruct"])
|
||||
@pytest.mark.skipif(not current_platform.is_tpu(),
|
||||
reason="This test needs a TPU")
|
||||
@ -77,13 +20,11 @@ def test_sampler_different(model_name: str):
|
||||
Test significantly different sampling params to assert the model produces
|
||||
different results.
|
||||
"""
|
||||
llm = LLM(
|
||||
model_name,
|
||||
enforce_eager=True,
|
||||
max_num_seqs=1,
|
||||
max_model_len=64,
|
||||
# TODO: setting to 0.5 or it will go OOM
|
||||
gpu_memory_utilization=0.5)
|
||||
llm = LLM(model_name,
|
||||
enforce_eager=False,
|
||||
max_num_seqs=1,
|
||||
max_model_len=512,
|
||||
max_num_batched_tokens=512)
|
||||
prompts = [
|
||||
"Write a short story about a robot that dreams for the first time."
|
||||
]
|
||||
|
||||
@ -88,6 +88,7 @@ class TPUSupportedSamplingMetadata:
|
||||
# Copy slice from CPU to corresponding TPU pre-allocated tensor.
|
||||
# Pad value is the default one.
|
||||
cpu_tensor[num_reqs:padded_num_reqs] = fill_val
|
||||
# Subtle compilation: len(tpu_tensor) must be >= `padded_num_reqs`
|
||||
tpu_tensor[:padded_num_reqs] = cpu_tensor[:padded_num_reqs]
|
||||
|
||||
# NOTE NickLucche The sync CPU-TPU graph we produce here must be
|
||||
@ -101,13 +102,6 @@ class TPUSupportedSamplingMetadata:
|
||||
copy_slice(input_batch.min_p_cpu_tensor, input_batch.min_p,
|
||||
DEFAULT_SAMPLING_PARAMS["min_p"])
|
||||
|
||||
# copy_slice(input_batch.frequency_penalties_cpu_tensor,
|
||||
# input_batch.frequency_penalties)
|
||||
# copy_slice(input_batch.presence_penalties_cpu_tensor,
|
||||
# input_batch.presence_penalties)
|
||||
# copy_slice(input_batch.repetition_penalties_cpu_tensor,
|
||||
# input_batch.repetition_penalties)
|
||||
|
||||
xm.mark_step()
|
||||
xm.wait_device_ops()
|
||||
|
||||
|
||||
@ -88,6 +88,8 @@ class TPUModelRunner:
|
||||
self.max_model_len = model_config.max_model_len
|
||||
self.max_num_blocks_per_req = cdiv(self.max_model_len, self.block_size)
|
||||
self.max_num_tokens = scheduler_config.max_num_batched_tokens
|
||||
# InputBatch needs to work with sampling tensors greater than padding
|
||||
# to avoid dynamic shapes. Also, avoid suboptimal alignment.
|
||||
self.max_num_reqs = max(scheduler_config.max_num_seqs, MIN_NUM_SEQS)
|
||||
|
||||
# Model-related.
|
||||
@ -788,6 +790,7 @@ class TPUModelRunner:
|
||||
dummy_hidden = torch.randn((num_tokens, hsize),
|
||||
device=device,
|
||||
dtype=torch.bfloat16)
|
||||
# Compile for [8, 16, .., 128,.., `self.max_num_reqs`]
|
||||
while True:
|
||||
indices = torch.zeros(
|
||||
num_reqs_to_sample,
|
||||
@ -804,7 +807,9 @@ class TPUModelRunner:
|
||||
out = out.cpu()
|
||||
if num_reqs_to_sample >= self.max_num_reqs:
|
||||
break
|
||||
num_reqs_to_sample *= 2
|
||||
# Make sure to compile the `max_num_reqs` upper-limit case
|
||||
num_reqs_to_sample = _get_padded_num_reqs_with_upper_limit(
|
||||
num_reqs_to_sample + 1, self.max_num_reqs)
|
||||
xm.wait_device_ops()
|
||||
end = time.perf_counter()
|
||||
logger.info("Compilation finished in in %.2f [secs].", end - start)
|
||||
@ -897,7 +902,6 @@ class ModelWrapperV1(nn.Module):
|
||||
|
||||
return hidden_states
|
||||
|
||||
# @torch.compile(backend="openxla", fullgraph=True, dynamic=False)
|
||||
def sample_from_hidden(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user