[Core] Switch Flat logprob control from environment variable to SamplingParams (#28914)

Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
Co-authored-by: 22quinn <33176974+22quinn@users.noreply.github.com>
This commit is contained in:
Jialin Ouyang 2025-11-18 18:10:02 -08:00 committed by GitHub
parent da94c7c0eb
commit 40b6b38f2c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 33 additions and 41 deletions

View File

@ -24,9 +24,7 @@ def test_ranks(
greedy,
flat_logprobs,
example_prompts,
monkeypatch: pytest.MonkeyPatch,
):
monkeypatch.setenv("VLLM_FLAT_LOGPROBS", "1" if flat_logprobs else "0")
with vllm_runner(model, dtype=dtype, max_logprobs=MAX_LOGPROBS) as vllm_model:
tokenizer = vllm_model.llm.get_tokenizer()
example_prompt_tokens = [tokenizer.encode(prompt) for prompt in example_prompts]
@ -36,6 +34,7 @@ def test_ranks(
max_tokens=MAX_TOKENS,
logprobs=NUM_TOP_LOGPROBS,
prompt_logprobs=NUM_PROMPT_LOGPROBS,
flat_logprobs=flat_logprobs,
)
results = vllm_model.generate_w_logprobs(example_prompts, sampling_params)

View File

@ -2,8 +2,6 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from vllm.logprobs import (
FlatLogprobs,
Logprob,
@ -14,24 +12,20 @@ from vllm.logprobs import (
)
def test_create_logprobs_non_flat(monkeypatch: pytest.MonkeyPatch) -> None:
monkeypatch.setenv("VLLM_FLAT_LOGPROBS", "0")
prompt_logprobs = create_prompt_logprobs()
def test_create_logprobs_non_flat() -> None:
prompt_logprobs = create_prompt_logprobs(flat_logprobs=False)
assert isinstance(prompt_logprobs, list)
# Ensure first prompt position logprobs is None
assert len(prompt_logprobs) == 1
assert prompt_logprobs[0] is None
sample_logprobs = create_sample_logprobs()
sample_logprobs = create_sample_logprobs(flat_logprobs=False)
assert isinstance(sample_logprobs, list)
assert len(sample_logprobs) == 0
def test_create_logprobs_flat(monkeypatch: pytest.MonkeyPatch) -> None:
monkeypatch.setenv("VLLM_FLAT_LOGPROBS", "1")
prompt_logprobs = create_prompt_logprobs()
def test_create_logprobs_flat() -> None:
prompt_logprobs = create_prompt_logprobs(flat_logprobs=True)
assert isinstance(prompt_logprobs, FlatLogprobs)
assert prompt_logprobs.start_indices == [0]
assert prompt_logprobs.end_indices == [0]
@ -43,7 +37,7 @@ def test_create_logprobs_flat(monkeypatch: pytest.MonkeyPatch) -> None:
assert len(prompt_logprobs) == 1
assert prompt_logprobs[0] == dict()
sample_logprobs = create_sample_logprobs()
sample_logprobs = create_sample_logprobs(flat_logprobs=True)
assert isinstance(sample_logprobs, FlatLogprobs)
assert len(sample_logprobs.start_indices) == 0
assert len(sample_logprobs.end_indices) == 0
@ -54,11 +48,8 @@ def test_create_logprobs_flat(monkeypatch: pytest.MonkeyPatch) -> None:
assert len(sample_logprobs) == 0
def test_append_logprobs_for_next_position_none_flat(
monkeypatch: pytest.MonkeyPatch,
) -> None:
monkeypatch.setenv("VLLM_FLAT_LOGPROBS", "0")
logprobs = create_sample_logprobs()
def test_append_logprobs_for_next_position_none_flat() -> None:
logprobs = create_sample_logprobs(flat_logprobs=False)
append_logprobs_for_next_position(
logprobs,
token_ids=[1],
@ -85,11 +76,8 @@ def test_append_logprobs_for_next_position_none_flat(
]
def test_append_logprobs_for_next_position_flat(
monkeypatch: pytest.MonkeyPatch,
) -> None:
monkeypatch.setenv("VLLM_FLAT_LOGPROBS", "1")
logprobs = create_sample_logprobs()
def test_append_logprobs_for_next_position_flat() -> None:
logprobs = create_sample_logprobs(flat_logprobs=True)
append_logprobs_for_next_position(
logprobs,
token_ids=[1],

View File

@ -225,7 +225,6 @@ if TYPE_CHECKING:
VLLM_DISABLE_SHARED_EXPERTS_STREAM: bool = False
VLLM_SHARED_EXPERTS_STREAM_TOKEN_THRESHOLD: int = 256
VLLM_COMPILE_CACHE_SAVE_FORMAT: Literal["binary", "unpacked"] = "binary"
VLLM_FLAT_LOGPROBS: bool = False
def get_default_cache_root():
@ -1499,11 +1498,6 @@ environment_variables: dict[str, Callable[[], Any]] = {
"VLLM_COMPILE_CACHE_SAVE_FORMAT": env_with_choices(
"VLLM_COMPILE_CACHE_SAVE_FORMAT", "binary", ["binary", "unpacked"]
),
# Flag to enable FlatLogprobs whose GC overhead is significantly smaller than
# the original list[dict[int, Logprob]] approach.
# After enabled, PromptLogprobs and SampleLogprobs would populated as
# FlatLogprobs.
"VLLM_FLAT_LOGPROBS": lambda: bool(int(os.getenv("VLLM_FLAT_LOGPROBS", "0"))),
}
# --8<-- [end:env-vars-definition]

View File

@ -5,8 +5,6 @@ from collections.abc import Iterable, Iterator, MutableSequence
from dataclasses import dataclass, field
from typing import overload
import vllm.envs as envs
# We use dataclass for now because it is used for
# openai server output, and msgspec is not serializable.
@ -161,17 +159,17 @@ PromptLogprobs = FlatLogprobs | list[LogprobsOnePosition | None]
SampleLogprobs = FlatLogprobs | list[LogprobsOnePosition]
def create_prompt_logprobs() -> PromptLogprobs:
def create_prompt_logprobs(flat_logprobs: bool) -> PromptLogprobs:
"""Creates a container to store prompt logprobs for a request"""
logprobs = FlatLogprobs() if envs.VLLM_FLAT_LOGPROBS else []
logprobs = FlatLogprobs() if flat_logprobs else []
# NOTE: logprob of first prompt token is None.
logprobs.append(None)
return logprobs
def create_sample_logprobs() -> SampleLogprobs:
def create_sample_logprobs(flat_logprobs: bool) -> SampleLogprobs:
"""Creates a container to store decode logprobs for a request"""
return FlatLogprobs() if envs.VLLM_FLAT_LOGPROBS else []
return FlatLogprobs() if flat_logprobs else []
def append_logprobs_for_next_position(

View File

@ -204,6 +204,12 @@ class SamplingParams(
prompt_logprobs: int | None = None
"""Number of log probabilities to return per prompt token.
When set to -1, return all `vocab_size` log probabilities."""
flat_logprobs: bool = False
"""Whether to return logprobs in flatten format (i.e. FlatLogprob)
for better performance.
NOTE: GC costs of FlatLogprobs is significantly smaller than
list[dict[int, Logprob]]. After enabled, PromptLogprobs and
SampleLogprobs would populated as FlatLogprobs."""
# NOTE: This parameter is only exposed at the engine level for now.
# It is not exposed in the OpenAI API server, as the OpenAI API does
# not support returning only a list of token IDs.

View File

@ -43,15 +43,22 @@ class LogprobsProcessor:
tokenizer: AnyTokenizer | None,
request: EngineCoreRequest,
) -> "LogprobsProcessor":
assert request.sampling_params is not None
num_logprobs = request.sampling_params.logprobs
num_prompt_logprobs = request.sampling_params.prompt_logprobs
sampling_params = request.sampling_params
assert sampling_params is not None
num_logprobs = sampling_params.logprobs
num_prompt_logprobs = sampling_params.prompt_logprobs
return cls(
tokenizer=tokenizer,
cumulative_logprob=(None if num_logprobs is None else 0.0),
logprobs=(None if num_logprobs is None else create_sample_logprobs()),
logprobs=(
None
if num_logprobs is None
else create_sample_logprobs(sampling_params.flat_logprobs)
),
prompt_logprobs=(
None if num_prompt_logprobs is None else create_prompt_logprobs()
None
if num_prompt_logprobs is None
else create_prompt_logprobs(sampling_params.flat_logprobs)
),
num_prompt_logprobs=num_prompt_logprobs,
num_logprobs=num_logprobs,