[CI]: Add LMCacheConnector Unit Tests (#27852)

Signed-off-by: Samuel Shen <slshen@uchciago.edu>
Co-authored-by: Samuel Shen <slshen@uchciago.edu>
Co-authored-by: Yihua Cheng <yihua98@uchicago.edu>
This commit is contained in:
Samuel Shen 2025-11-05 09:45:57 -08:00 committed by GitHub
parent c765f0b443
commit 40db194446
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 274 additions and 6 deletions

View File

@ -344,7 +344,7 @@ steps:
- pytest -v -s v1/logits_processors
- pytest -v -s v1/worker
- pytest -v -s v1/spec_decode
- pytest -v -s -m 'not cpu_test' v1/kv_connector/unit
- pytest -v -s -m 'not cpu_test' v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_lmcache_integration.py
- pytest -v -s -m 'not cpu_test' v1/metrics
- pytest -v -s v1/test_oracle.py
- pytest -v -s v1/test_request.py

View File

@ -316,6 +316,7 @@ steps:
- vllm/
- tests/v1
commands:
- uv pip install --system -r /vllm-workspace/requirements/kv_connectors.txt
# split the test to avoid interference
- pytest -v -s -m 'not cpu_test' v1/core
- pytest -v -s v1/executor

View File

@ -0,0 +1,271 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# NOTE: if your PR has broken one of the tests here (sorry),
# kindly patch the corresponding integration in
# /vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py
# or reach out to @aposataC for assistance
# Assumption vs. Correctness Tests:
# these unit tests do *not* test correctness of LMCache-side or vLLM-side logic
# it is to ensure that assumptions LMCache makes about vLLM's interface are stable
def assumes(obj, attr, is_callable=False, is_instance_of=None):
import inspect
from dataclasses import is_dataclass
assumption_msg = (
f"LMCache connector currently assumes that {obj} has a(n) {attr} attribute"
)
if hasattr(obj, attr):
attr_value = getattr(obj, attr)
elif is_dataclass(obj) and attr in getattr(obj, "__dataclass_fields__", {}):
field = obj.__dataclass_fields__[attr]
field_type = field.type
origin = getattr(field_type, "__origin__", None)
if origin is not None:
field_type = origin
attr_value = field_type
else:
raise AssertionError(assumption_msg)
if is_callable:
assumption_msg += f" and that {obj}.{attr} is a callable"
assert callable(attr_value), assumption_msg
if is_instance_of:
assumption_msg += f" and that {obj}.{attr} is an instance of {is_instance_of}"
if isinstance(attr_value, property):
fget = attr_value.fget
assert fget is not None, f"Property {obj}.{attr} has no fget"
sig = inspect.signature(fget)
ret_anno = sig.return_annotation
assert ret_anno is not inspect._empty, (
f"Property {obj}.{attr} has no return annotation"
)
assert ret_anno == is_instance_of, assumption_msg
else:
if isinstance(attr_value, type):
assert attr_value is is_instance_of, assumption_msg
else:
assert isinstance(attr_value, is_instance_of), assumption_msg
def test_multimodal_interface():
# protect against interface changes
from vllm.multimodal.inputs import PlaceholderRange
assumes(PlaceholderRange, "offset")
assumes(PlaceholderRange, "length")
# test a minimal case
import torch
from vllm.distributed.kv_transfer.kv_connector.v1.lmcache_integration.utils import (
apply_mm_hashes_to_token_ids,
)
token_ids = torch.arange(10, dtype=torch.long)
mm_hashes = ["0000", "1111"] # hex repr of 0 and 4369
mm_positions = [
PlaceholderRange(offset=0, length=4),
PlaceholderRange(offset=5, length=4),
]
apply_mm_hashes_to_token_ids(token_ids, mm_hashes, mm_positions)
assert token_ids.tolist() == [0, 0, 0, 0, 4, 4369, 4369, 4369, 4369, 9]
def test_config_interface():
# protect against interface changes
from vllm.config import VllmConfig
from vllm.config.cache import CacheConfig
from vllm.config.kv_transfer import KVTransferConfig
from vllm.config.model import ModelConfig
from vllm.config.parallel import ParallelConfig
assumes(VllmConfig, "model_config")
assumes(VllmConfig, "cache_config")
assumes(VllmConfig, "parallel_config")
assumes(VllmConfig, "kv_transfer_config")
assumes(KVTransferConfig, "kv_role")
assumes(KVTransferConfig, "kv_connector_extra_config")
assumes(ModelConfig, "use_mla", is_instance_of=bool)
assumes(ModelConfig, "dtype")
assumes(ModelConfig, "max_model_len")
assumes(ModelConfig, "get_vocab_size", is_callable=True)
assumes(ModelConfig, "get_num_attention_heads", is_callable=True)
assumes(ModelConfig, "get_num_kv_heads", is_callable=True)
assumes(ModelConfig, "get_head_size", is_callable=True)
assumes(ModelConfig, "get_num_layers", is_callable=True)
assumes(ModelConfig, "get_num_kv_heads", is_callable=True)
assumes(ModelConfig, "model")
assumes(ParallelConfig, "world_size")
assumes(ParallelConfig, "rank")
assumes(ParallelConfig, "tensor_parallel_size")
assumes(ParallelConfig, "pipeline_parallel_size")
assumes(ParallelConfig, "data_parallel_size_local")
assumes(ParallelConfig, "data_parallel_rank_local")
assumes(CacheConfig, "cache_dtype")
assumes(CacheConfig, "block_size")
assumes(CacheConfig, "gpu_memory_utilization")
# mla metadata minimal cases
from vllm.distributed.kv_transfer.kv_connector.v1.lmcache_integration.utils import (
mla_enabled,
)
model_config = ModelConfig(model="deepseek-ai/DeepSeek-R1")
assert mla_enabled(model_config)
model_config = ModelConfig(model="Qwen/Qwen3-0.6B")
assert not mla_enabled(model_config)
# kv metadata minimal case
from vllm.utils.torch_utils import get_kv_cache_torch_dtype
model_config = ModelConfig(dtype="bfloat16")
parallel_config = ParallelConfig()
cache_config = CacheConfig(cache_dtype="bfloat16")
kv_dtype = get_kv_cache_torch_dtype(cache_config.cache_dtype, model_config.dtype)
use_mla = mla_enabled(model_config)
chunk_size = 256
num_layer = model_config.get_num_layers(parallel_config)
num_kv_head = model_config.get_num_kv_heads(parallel_config)
head_size = model_config.get_head_size()
kv_shape = (num_layer, 1 if use_mla else 2, chunk_size, num_kv_head, head_size)
# dummy lmcache metadata creation example
_ = (
model_config.model,
parallel_config.world_size,
parallel_config.rank,
"vllm",
kv_dtype,
kv_shape,
use_mla,
)
def test_request_interface():
# protect against interface changes
from types import NoneType
from vllm.sampling_params import SamplingParams
from vllm.v1.request import Request
req = Request(
request_id="test_request",
prompt_token_ids=[1, 2, 3],
sampling_params=SamplingParams(max_tokens=10),
pooling_params=None,
eos_token_id=100,
lora_request=None,
)
assumes(req, "mm_features", is_instance_of=(list, NoneType))
assumes(req, "request_id")
assumes(req, "priority")
assumes(req, "prompt_token_ids")
assumes(req, "sampling_params")
assumes(req, "num_tokens")
assumes(req, "kv_transfer_params", is_instance_of=(dict, NoneType))
from vllm.multimodal.inputs import MultiModalFeatureSpec, MultiModalKwargsItem
assumes(MultiModalFeatureSpec, "identifier")
assumes(MultiModalFeatureSpec, "mm_position")
# minimal case:
from vllm.multimodal.inputs import PlaceholderRange
request = Request(
request_id="test_request",
prompt_token_ids=[1, 2, 3],
sampling_params=SamplingParams(max_tokens=10),
pooling_params=None,
eos_token_id=100,
lora_request=None,
mm_features=[
MultiModalFeatureSpec(
modality="image",
identifier="0000",
data=MultiModalKwargsItem.dummy("dummy_m"),
mm_position=PlaceholderRange(offset=0, length=10),
)
],
)
from vllm.distributed.kv_transfer.kv_connector.v1.lmcache_integration.utils import (
extract_mm_features,
)
mm_hashes, mm_positions = extract_mm_features(request)
assert isinstance(mm_hashes, list)
assert len(mm_hashes) == 1
assert isinstance(mm_positions, list)
assert len(mm_positions) == 1
assert mm_positions[0].offset == 0
assert mm_positions[0].length == 10
def test_new_request_interface():
# protect against interface changes
from vllm.v1.core.sched.output import NewRequestData
assumes(NewRequestData, "req_id")
assumes(NewRequestData, "block_ids")
assumes(NewRequestData, "prompt_token_ids")
assumes(NewRequestData, "sampling_params")
def test_sampling_params_interface():
# protect against interface changes
from vllm.sampling_params import SamplingParams
assumes(SamplingParams, "extra_args")
# dumb example use case in LMCache
kv_transfer_params = {
"lmcache.tag.user": "example_user_1",
"lmcache.ttl": 60,
}
sampling_params = SamplingParams(
extra_args={"kv_transfer_params": kv_transfer_params}
)
assert sampling_params.extra_args["kv_transfer_params"] == kv_transfer_params
def test_tp_interface():
# protect against interface changes
import inspect
from vllm.distributed.parallel_state import get_tp_group
sig = inspect.signature(get_tp_group)
GroupCoordinator = sig.return_annotation
assumes(GroupCoordinator, "broadcast", is_callable=True)
assumes(GroupCoordinator, "broadcast_object", is_callable=True)
def test_forward_context_interface():
# protect against interface changes
from vllm.forward_context import ForwardContext
assumes(ForwardContext, "no_compile_layers", is_instance_of=dict)
assumes(ForwardContext, "virtual_engine")
assumes(ForwardContext, "attn_metadata")
def test_scheduler_output_interface():
# protect against interface changes
from vllm.v1.core.sched.output import SchedulerOutput
assumes(SchedulerOutput, "finished_req_ids")
assumes(SchedulerOutput, "scheduled_new_reqs", is_instance_of=list)
assumes(SchedulerOutput, "num_scheduled_tokens", is_instance_of=dict)
assumes(SchedulerOutput, "scheduled_cached_reqs")
from vllm.v1.core.sched.output import CachedRequestData
assumes(CachedRequestData, "req_ids", is_instance_of=list)
assumes(CachedRequestData, "new_block_ids", is_instance_of=list)

View File

@ -724,7 +724,7 @@ class LMCacheConnectorV1Impl:
"max_model_len": getattr(
vllm_config.model_config, "max_model_len", None
),
"vocab_size": getattr(vllm_config.model_config, "vocab_size", None),
"vocab_size": vllm_config.model_config.get_vocab_size(),
"num_layers": getattr(
vllm_config.model_config, "get_num_layers", lambda _: None
)(vllm_config.parallel_config),
@ -746,10 +746,6 @@ class LMCacheConnectorV1Impl:
"gpu_memory_utilization": getattr(
vllm_config.cache_config, "gpu_memory_utilization", None
),
"swap_space": getattr(vllm_config.cache_config, "swap_space", None),
"enable_prefix_caching": getattr(
vllm_config.cache_config, "enable_prefix_caching", None
),
},
}