[Feature] Allow configuring FlashInfer workspace size (#28269)

Signed-off-by: Max Hu <hyoung2991@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
Max Hu 2025-11-11 18:32:20 -05:00 committed by GitHub
parent e5f599d4d1
commit 412e153df5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 16 additions and 12 deletions

View File

@ -159,6 +159,7 @@ if TYPE_CHECKING:
VLLM_USE_FLASHINFER_MOE_FP8: bool = False
VLLM_USE_FLASHINFER_MOE_FP4: bool = False
VLLM_FLASHINFER_MOE_BACKEND: Literal["throughput", "latency"] = "latency"
VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE: int = 394 * 1024 * 1024
VLLM_XGRAMMAR_CACHE_MB: int = 0
VLLM_MSGPACK_ZERO_COPY_THRESHOLD: int = 256
VLLM_ALLOW_INSECURE_SERIALIZATION: bool = False
@ -1237,6 +1238,10 @@ environment_variables: dict[str, Callable[[], Any]] = {
"VLLM_FLASHINFER_MOE_BACKEND": env_with_choices(
"VLLM_FLASHINFER_MOE_BACKEND", "latency", ["throughput", "latency"]
),
# Control the workspace buffer size for the FlashInfer backend.
"VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE": lambda: int(
os.getenv("VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE", str(394 * 1024 * 1024))
),
# Control the maximum number of tokens per expert supported by the
# NVFP4 MoE CUTLASS Kernel. This value is used to create a buffer for
# the blockscale tensor of activations NVFP4 Quantization.
@ -1583,6 +1588,7 @@ def compute_hash() -> str:
"VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8",
"VLLM_USE_FLASHINFER_MOE_MXFP4_MXFP8_CUTLASS",
"VLLM_USE_FLASHINFER_MOE_MXFP4_BF16",
"VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE",
"VLLM_USE_CUDNN_PREFILL",
"VLLM_USE_TRTLLM_RAGGED_DEEPSEEK_PREFILL",
"VLLM_USE_TRTLLM_ATTENTION",

View File

@ -16,6 +16,7 @@ from flashinfer.decode import _get_range_buf, trtllm_batch_decode_with_kv_cache
from flashinfer.prefill import trtllm_batch_context_with_kv_cache
from flashinfer.utils import FP4Tensor
from vllm import envs
from vllm.attention.backends.abstract import (
AttentionBackend,
AttentionImpl,
@ -55,7 +56,6 @@ from vllm.v1.attention.backends.utils import (
)
from vllm.v1.kv_cache_interface import AttentionSpec
FLASHINFER_WORKSPACE_BUFFER_SIZE = 256 * 1024 * 1024
FLASHINFER_WORKSPACE_BUFFER_SIZE_BATCH_INVARIANT = 2048 * 1024 * 1024
FP8_DTYPE = current_platform.fp8_dtype()
@ -70,7 +70,7 @@ def _get_trtllm_gen_workspace_buffer():
global trtllm_gen_workspace_buffer
if trtllm_gen_workspace_buffer is None:
trtllm_gen_workspace_buffer = torch.zeros(
FLASHINFER_WORKSPACE_BUFFER_SIZE, dtype=torch.uint8, device="cuda"
envs.VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE, dtype=torch.uint8, device="cuda"
)
return trtllm_gen_workspace_buffer
@ -414,7 +414,7 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
def _get_workspace_buffer(self):
if self._workspace_buffer is None:
buffer_size = FLASHINFER_WORKSPACE_BUFFER_SIZE
buffer_size = envs.VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE
if vllm_is_batch_invariant():
buffer_size = FLASHINFER_WORKSPACE_BUFFER_SIZE_BATCH_INVARIANT
self._workspace_buffer = torch.zeros(

View File

@ -196,8 +196,8 @@ from typing import ClassVar, Generic, TypeVar
import torch
from tqdm import tqdm
import vllm.envs as envs
from vllm import _custom_ops as ops
from vllm import envs
from vllm._aiter_ops import rocm_aiter_ops
from vllm.attention.backends.abstract import (
AttentionBackend,
@ -453,12 +453,6 @@ def use_trtllm_ragged_deepseek_prefill() -> bool:
)
# Currently 394MB, this can be tuned based on GEMM sizes used.
# Chosen to be the same as sglang:
# https://github.com/sgl-project/sglang/blob/766392c6bda2558b61ce6d1c1bfd8081a549e1f1/python/sglang/global_config.py#L37
FLASHINFER_WORKSPACE_BUFFER_SIZE = 394 * 1024 * 1024
class MLACommonMetadataBuilder(AttentionMetadataBuilder[M]):
"""
NOTE: Please read the comment at the top of the file before trying to
@ -590,7 +584,9 @@ class MLACommonMetadataBuilder(AttentionMetadataBuilder[M]):
if self._use_fi_prefill:
self._workspace_buffer = torch.empty(
FLASHINFER_WORKSPACE_BUFFER_SIZE, dtype=torch.uint8, device=device
envs.VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE,
dtype=torch.uint8,
device=device,
)
self._fi_prefill_main: BatchPrefillWithRaggedKVCacheWrapper | None = None
@ -602,7 +598,9 @@ class MLACommonMetadataBuilder(AttentionMetadataBuilder[M]):
if self._use_trtllm_ragged_prefill:
self._workspace_buffer = torch.empty(
FLASHINFER_WORKSPACE_BUFFER_SIZE, dtype=torch.uint8, device=device
envs.VLLM_FLASHINFER_WORKSPACE_BUFFER_SIZE,
dtype=torch.uint8,
device=device,
)
if self._use_cudnn_prefill: