[Misc] Clean up unnecessary E501 ignore (#26274)

Signed-off-by: Roger Wang <hey@rogerw.io>
This commit is contained in:
Roger Wang 2025-10-06 00:29:18 -07:00 committed by GitHub
parent 7c2ec0fe87
commit 43c146ca42
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 38 additions and 38 deletions

View File

@ -626,7 +626,7 @@ class RandomDataset(BenchmarkDataset):
# Decode, then re-encode and truncate to preserve token count invariants # Decode, then re-encode and truncate to preserve token count invariants
total_input_len = prefix_len + int(input_len) total_input_len = prefix_len + int(input_len)
prompt, adjusted_token_sequence, token_mismatch = ( prompt, adjusted_token_sequence, token_mismatch = (
gen_prompt_decode_to_target_len( # noqa: E501 gen_prompt_decode_to_target_len(
tokenizer=tokenizer, tokenizer=tokenizer,
token_sequence=token_sequence, token_sequence=token_sequence,
target_token_len=total_input_len, target_token_len=total_input_len,
@ -2855,7 +2855,7 @@ class PrefixRepetitionRandomDataset(BenchmarkDataset):
for _ in range(prompts_per_prefix): for _ in range(prompts_per_prefix):
suffix_tokens, token_mistmatch = _generate_exact_length_tokens( suffix_tokens, token_mistmatch = _generate_exact_length_tokens(
suffix_len suffix_len
) # noqa: E501 )
token_mismatch_total += token_mistmatch token_mismatch_total += token_mistmatch
combined_tokens = prefix_tokens + suffix_tokens combined_tokens = prefix_tokens + suffix_tokens
prompt = tokenizer.decode(combined_tokens) prompt = tokenizer.decode(combined_tokens)

View File

@ -459,14 +459,14 @@ def validate_args(args):
): ):
assert args.backend == "vllm-chat", ( assert args.backend == "vllm-chat", (
f"{args.dataset_path} needs to use vllm-chat as the backend." f"{args.dataset_path} needs to use vllm-chat as the backend."
) # noqa: E501 )
elif args.dataset_path in ( elif args.dataset_path in (
InstructCoderDataset.SUPPORTED_DATASET_PATHS InstructCoderDataset.SUPPORTED_DATASET_PATHS
| AIMODataset.SUPPORTED_DATASET_PATHS | AIMODataset.SUPPORTED_DATASET_PATHS
): ):
assert args.backend == "vllm", ( assert args.backend == "vllm", (
f"{args.dataset_path} needs to use vllm as the backend." f"{args.dataset_path} needs to use vllm as the backend."
) # noqa: E501 )
else: else:
raise ValueError(f"{args.dataset_path} is not supported by hf dataset.") raise ValueError(f"{args.dataset_path} is not supported by hf dataset.")

View File

@ -19,7 +19,7 @@ if is_torch_equal_or_newer("2.6"):
from torch._inductor.custom_graph_pass import CustomGraphPass from torch._inductor.custom_graph_pass import CustomGraphPass
else: else:
# CustomGraphPass is not present in 2.5 or lower, import our version # CustomGraphPass is not present in 2.5 or lower, import our version
from .torch25_custom_graph_pass import ( # noqa: E501 from .torch25_custom_graph_pass import (
Torch25CustomGraphPass as CustomGraphPass, Torch25CustomGraphPass as CustomGraphPass,
) )

View File

@ -95,7 +95,7 @@ def get_quantization_config(quantization: str) -> type[QuantizationConfig]:
from .awq_marlin import AWQMarlinConfig from .awq_marlin import AWQMarlinConfig
from .bitblas import BitBLASConfig from .bitblas import BitBLASConfig
from .bitsandbytes import BitsAndBytesConfig from .bitsandbytes import BitsAndBytesConfig
from .compressed_tensors.compressed_tensors import ( # noqa: E501 from .compressed_tensors.compressed_tensors import (
CompressedTensorsConfig, CompressedTensorsConfig,
) )
from .deepspeedfp import DeepSpeedFPConfig from .deepspeedfp import DeepSpeedFPConfig

View File

@ -26,7 +26,7 @@ from vllm.model_executor.layers.linear import (
UnquantizedLinearMethod, UnquantizedLinearMethod,
) )
from vllm.model_executor.layers.quantization import QuantizationMethods from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import ( # noqa: E501 from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizationConfig,
QuantizeMethodBase, QuantizeMethodBase,
) )
@ -256,7 +256,7 @@ class CompressedTensorsConfig(QuantizationConfig):
) )
else: else:
target_scheme_map[target]["input_activations"] = ( target_scheme_map[target]["input_activations"] = (
QuantizationArgs.model_validate( # noqa: E501 QuantizationArgs.model_validate(
quant_config.get("input_activations") quant_config.get("input_activations")
) )
) )

View File

@ -176,7 +176,7 @@ class Gemma3nDummyInputsBuilder(BaseDummyInputsBuilder[Gemma3nProcessingInfo]):
processor = self.info.get_hf_processor() processor = self.info.get_hf_processor()
audio_feature_extractor: Gemma3nAudioFeatureExtractor = ( audio_feature_extractor: Gemma3nAudioFeatureExtractor = (
processor.feature_extractor processor.feature_extractor
) # noqa: E501 )
audio_len = audio_feature_extractor.fft_length audio_len = audio_feature_extractor.fft_length
image_processor: SiglipImageProcessorFast = processor.image_processor image_processor: SiglipImageProcessorFast = processor.image_processor
img_width = image_processor.size.get("width", 224) img_width = image_processor.size.get("width", 224)

View File

@ -120,7 +120,7 @@ _TEXT_GENERATION_MODELS = {
"JambaForCausalLM": ("jamba", "JambaForCausalLM"), "JambaForCausalLM": ("jamba", "JambaForCausalLM"),
"Lfm2ForCausalLM": ("lfm2", "Lfm2ForCausalLM"), "Lfm2ForCausalLM": ("lfm2", "Lfm2ForCausalLM"),
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"), "LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
"Llama4ForCausalLM": ("llama4", "Llama4ForCausalLM"), # noqa: E501 "Llama4ForCausalLM": ("llama4", "Llama4ForCausalLM"),
# For decapoda-research/llama-* # For decapoda-research/llama-*
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"), "LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
"LongcatFlashForCausalLM": ("longcat_flash", "LongcatFlashForCausalLM"), "LongcatFlashForCausalLM": ("longcat_flash", "LongcatFlashForCausalLM"),
@ -204,7 +204,7 @@ _EMBEDDING_MODELS = {
"LlavaNextForConditionalGeneration": ( "LlavaNextForConditionalGeneration": (
"llava_next", "llava_next",
"LlavaNextForConditionalGeneration", "LlavaNextForConditionalGeneration",
), # noqa: E501 ),
"Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"), "Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
"Qwen2VLForConditionalGeneration": ("qwen2_vl", "Qwen2VLForConditionalGeneration"), # noqa: E501 "Qwen2VLForConditionalGeneration": ("qwen2_vl", "Qwen2VLForConditionalGeneration"), # noqa: E501
# Technically Terratorch models work on images, both in # Technically Terratorch models work on images, both in
@ -240,46 +240,46 @@ _MULTIMODAL_MODELS = {
"AyaVisionForConditionalGeneration": ( "AyaVisionForConditionalGeneration": (
"aya_vision", "aya_vision",
"AyaVisionForConditionalGeneration", "AyaVisionForConditionalGeneration",
), # noqa: E501 ),
"Blip2ForConditionalGeneration": ("blip2", "Blip2ForConditionalGeneration"), "Blip2ForConditionalGeneration": ("blip2", "Blip2ForConditionalGeneration"),
"ChameleonForConditionalGeneration": ( "ChameleonForConditionalGeneration": (
"chameleon", "chameleon",
"ChameleonForConditionalGeneration", "ChameleonForConditionalGeneration",
), # noqa: E501 ),
"Cohere2VisionForConditionalGeneration": ( "Cohere2VisionForConditionalGeneration": (
"cohere2_vision", "cohere2_vision",
"Cohere2VisionForConditionalGeneration", "Cohere2VisionForConditionalGeneration",
), # noqa: E501 ),
"DeepseekVLV2ForCausalLM": ("deepseek_vl2", "DeepseekVLV2ForCausalLM"), "DeepseekVLV2ForCausalLM": ("deepseek_vl2", "DeepseekVLV2ForCausalLM"),
"DotsOCRForCausalLM": ("dots_ocr", "DotsOCRForCausalLM"), "DotsOCRForCausalLM": ("dots_ocr", "DotsOCRForCausalLM"),
"Ernie4_5_VLMoeForConditionalGeneration": ( "Ernie4_5_VLMoeForConditionalGeneration": (
"ernie45_vl", "ernie45_vl",
"Ernie4_5_VLMoeForConditionalGeneration", "Ernie4_5_VLMoeForConditionalGeneration",
), # noqa: E501 ),
"FuyuForCausalLM": ("fuyu", "FuyuForCausalLM"), "FuyuForCausalLM": ("fuyu", "FuyuForCausalLM"),
"Gemma3ForConditionalGeneration": ("gemma3_mm", "Gemma3ForConditionalGeneration"), # noqa: E501 "Gemma3ForConditionalGeneration": ("gemma3_mm", "Gemma3ForConditionalGeneration"), # noqa: E501
"Gemma3nForConditionalGeneration": ( "Gemma3nForConditionalGeneration": (
"gemma3n_mm", "gemma3n_mm",
"Gemma3nForConditionalGeneration", "Gemma3nForConditionalGeneration",
), # noqa: E501 ),
"GLM4VForCausalLM": ("glm4v", "GLM4VForCausalLM"), "GLM4VForCausalLM": ("glm4v", "GLM4VForCausalLM"),
"Glm4vForConditionalGeneration": ("glm4_1v", "Glm4vForConditionalGeneration"), # noqa: E501 "Glm4vForConditionalGeneration": ("glm4_1v", "Glm4vForConditionalGeneration"), # noqa: E501
"Glm4vMoeForConditionalGeneration": ("glm4_1v", "Glm4vMoeForConditionalGeneration"), # noqa: E501 "Glm4vMoeForConditionalGeneration": ("glm4_1v", "Glm4vMoeForConditionalGeneration"), # noqa: E501
"GraniteSpeechForConditionalGeneration": ( "GraniteSpeechForConditionalGeneration": (
"granite_speech", "granite_speech",
"GraniteSpeechForConditionalGeneration", "GraniteSpeechForConditionalGeneration",
), # noqa: E501 ),
"H2OVLChatModel": ("h2ovl", "H2OVLChatModel"), "H2OVLChatModel": ("h2ovl", "H2OVLChatModel"),
"InternVLChatModel": ("internvl", "InternVLChatModel"), "InternVLChatModel": ("internvl", "InternVLChatModel"),
"NemotronH_Nano_VL_V2": ("nano_nemotron_vl", "NemotronH_Nano_VL_V2"), "NemotronH_Nano_VL_V2": ("nano_nemotron_vl", "NemotronH_Nano_VL_V2"),
"InternS1ForConditionalGeneration": ( "InternS1ForConditionalGeneration": (
"interns1", "interns1",
"InternS1ForConditionalGeneration", "InternS1ForConditionalGeneration",
), # noqa: E501 ),
"InternVLForConditionalGeneration": ( "InternVLForConditionalGeneration": (
"interns1", "interns1",
"InternS1ForConditionalGeneration", "InternS1ForConditionalGeneration",
), # noqa: E501 ),
"Idefics3ForConditionalGeneration": ( "Idefics3ForConditionalGeneration": (
"idefics3", "idefics3",
"Idefics3ForConditionalGeneration", "Idefics3ForConditionalGeneration",
@ -289,7 +289,7 @@ _MULTIMODAL_MODELS = {
"KeyeVL1_5ForConditionalGeneration": ( "KeyeVL1_5ForConditionalGeneration": (
"keye_vl1_5", "keye_vl1_5",
"KeyeVL1_5ForConditionalGeneration", "KeyeVL1_5ForConditionalGeneration",
), # noqa: E501 ),
"RForConditionalGeneration": ("rvl", "RForConditionalGeneration"), "RForConditionalGeneration": ("rvl", "RForConditionalGeneration"),
"KimiVLForConditionalGeneration": ("kimi_vl", "KimiVLForConditionalGeneration"), # noqa: E501 "KimiVLForConditionalGeneration": ("kimi_vl", "KimiVLForConditionalGeneration"), # noqa: E501
"Llama_Nemotron_Nano_VL": ("nemotron_vl", "LlamaNemotronVLChatModel"), "Llama_Nemotron_Nano_VL": ("nemotron_vl", "LlamaNemotronVLChatModel"),
@ -298,27 +298,27 @@ _MULTIMODAL_MODELS = {
"LlavaNextForConditionalGeneration": ( "LlavaNextForConditionalGeneration": (
"llava_next", "llava_next",
"LlavaNextForConditionalGeneration", "LlavaNextForConditionalGeneration",
), # noqa: E501 ),
"LlavaNextVideoForConditionalGeneration": ( "LlavaNextVideoForConditionalGeneration": (
"llava_next_video", "llava_next_video",
"LlavaNextVideoForConditionalGeneration", "LlavaNextVideoForConditionalGeneration",
), # noqa: E501 ),
"LlavaOnevisionForConditionalGeneration": ( "LlavaOnevisionForConditionalGeneration": (
"llava_onevision", "llava_onevision",
"LlavaOnevisionForConditionalGeneration", "LlavaOnevisionForConditionalGeneration",
), # noqa: E501 ),
"MantisForConditionalGeneration": ("llava", "MantisForConditionalGeneration"), # noqa: E501 "MantisForConditionalGeneration": ("llava", "MantisForConditionalGeneration"), # noqa: E501
"MiDashengLMModel": ("midashenglm", "MiDashengLMModel"), "MiDashengLMModel": ("midashenglm", "MiDashengLMModel"),
"MiniMaxVL01ForConditionalGeneration": ( "MiniMaxVL01ForConditionalGeneration": (
"minimax_vl_01", "minimax_vl_01",
"MiniMaxVL01ForConditionalGeneration", "MiniMaxVL01ForConditionalGeneration",
), # noqa: E501 ),
"MiniCPMO": ("minicpmo", "MiniCPMO"), "MiniCPMO": ("minicpmo", "MiniCPMO"),
"MiniCPMV": ("minicpmv", "MiniCPMV"), "MiniCPMV": ("minicpmv", "MiniCPMV"),
"Mistral3ForConditionalGeneration": ( "Mistral3ForConditionalGeneration": (
"mistral3", "mistral3",
"Mistral3ForConditionalGeneration", "Mistral3ForConditionalGeneration",
), # noqa: E501 ),
"MolmoForCausalLM": ("molmo", "MolmoForCausalLM"), "MolmoForCausalLM": ("molmo", "MolmoForCausalLM"),
"NVLM_D": ("nvlm_d", "NVLM_D_Model"), "NVLM_D": ("nvlm_d", "NVLM_D_Model"),
"Ovis": ("ovis", "Ovis"), "Ovis": ("ovis", "Ovis"),
@ -326,7 +326,7 @@ _MULTIMODAL_MODELS = {
"PaliGemmaForConditionalGeneration": ( "PaliGemmaForConditionalGeneration": (
"paligemma", "paligemma",
"PaliGemmaForConditionalGeneration", "PaliGemmaForConditionalGeneration",
), # noqa: E501 ),
"Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"), "Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"),
"Phi4MMForCausalLM": ("phi4mm", "Phi4MMForCausalLM"), "Phi4MMForCausalLM": ("phi4mm", "Phi4MMForCausalLM"),
"Phi4MultimodalForCausalLM": ("phi4_multimodal", "Phi4MultimodalForCausalLM"), # noqa: E501 "Phi4MultimodalForCausalLM": ("phi4_multimodal", "Phi4MultimodalForCausalLM"), # noqa: E501
@ -336,31 +336,31 @@ _MULTIMODAL_MODELS = {
"Qwen2_5_VLForConditionalGeneration": ( "Qwen2_5_VLForConditionalGeneration": (
"qwen2_5_vl", "qwen2_5_vl",
"Qwen2_5_VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration",
), # noqa: E501 ),
"Qwen2AudioForConditionalGeneration": ( "Qwen2AudioForConditionalGeneration": (
"qwen2_audio", "qwen2_audio",
"Qwen2AudioForConditionalGeneration", "Qwen2AudioForConditionalGeneration",
), # noqa: E501 ),
"Qwen2_5OmniModel": ( "Qwen2_5OmniModel": (
"qwen2_5_omni_thinker", "qwen2_5_omni_thinker",
"Qwen2_5OmniThinkerForConditionalGeneration", "Qwen2_5OmniThinkerForConditionalGeneration",
), # noqa: E501 ),
"Qwen2_5OmniForConditionalGeneration": ( "Qwen2_5OmniForConditionalGeneration": (
"qwen2_5_omni_thinker", "qwen2_5_omni_thinker",
"Qwen2_5OmniThinkerForConditionalGeneration", "Qwen2_5OmniThinkerForConditionalGeneration",
), # noqa: E501 ),
"Qwen3VLForConditionalGeneration": ("qwen3_vl", "Qwen3VLForConditionalGeneration"), # noqa: E501 "Qwen3VLForConditionalGeneration": ("qwen3_vl", "Qwen3VLForConditionalGeneration"), # noqa: E501
"Qwen3VLMoeForConditionalGeneration": ( "Qwen3VLMoeForConditionalGeneration": (
"qwen3_vl_moe", "qwen3_vl_moe",
"Qwen3VLMoeForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration",
), # noqa: E501 ),
"SkyworkR1VChatModel": ("skyworkr1v", "SkyworkR1VChatModel"), "SkyworkR1VChatModel": ("skyworkr1v", "SkyworkR1VChatModel"),
"Step3VLForConditionalGeneration": ("step3_vl", "Step3VLForConditionalGeneration"), # noqa: E501 "Step3VLForConditionalGeneration": ("step3_vl", "Step3VLForConditionalGeneration"), # noqa: E501
"TarsierForConditionalGeneration": ("tarsier", "TarsierForConditionalGeneration"), # noqa: E501 "TarsierForConditionalGeneration": ("tarsier", "TarsierForConditionalGeneration"), # noqa: E501
"Tarsier2ForConditionalGeneration": ( "Tarsier2ForConditionalGeneration": (
"qwen2_vl", "qwen2_vl",
"Tarsier2ForConditionalGeneration", "Tarsier2ForConditionalGeneration",
), # noqa: E501 ),
"UltravoxModel": ("ultravox", "UltravoxModel"), "UltravoxModel": ("ultravox", "UltravoxModel"),
"VoxtralForConditionalGeneration": ("voxtral", "VoxtralForConditionalGeneration"), # noqa: E501 "VoxtralForConditionalGeneration": ("voxtral", "VoxtralForConditionalGeneration"), # noqa: E501
# [Encoder-decoder] # [Encoder-decoder]
@ -401,23 +401,23 @@ _TRANSFORMERS_BACKEND_MODELS = {
"TransformersMoEForMultimodalLM": ( "TransformersMoEForMultimodalLM": (
"transformers_moe", "transformers_moe",
"TransformersMoEForMultimodalLM", "TransformersMoEForMultimodalLM",
), # noqa: E501 ),
"TransformersEmbeddingModel": ( "TransformersEmbeddingModel": (
"transformers_pooling", "transformers_pooling",
"TransformersEmbeddingModel", "TransformersEmbeddingModel",
), # noqa: E501 ),
"TransformersForSequenceClassification": ( "TransformersForSequenceClassification": (
"transformers_pooling", "transformers_pooling",
"TransformersForSequenceClassification", "TransformersForSequenceClassification",
), # noqa: E501 ),
"TransformersMoEForSequenceClassification": ( "TransformersMoEForSequenceClassification": (
"transformers_pooling", "transformers_pooling",
"TransformersMoEForSequenceClassification", "TransformersMoEForSequenceClassification",
), # noqa: E501 ),
"TransformersMoEEmbeddingModel": ( "TransformersMoEEmbeddingModel": (
"transformers_pooling", "transformers_pooling",
"TransformersMoEEmbeddingModel", "TransformersMoEEmbeddingModel",
), # noqa: E501 ),
} }
_VLLM_MODELS = { _VLLM_MODELS = {

View File

@ -79,7 +79,7 @@ class GDNAttentionMetadataBuilder(AttentionMetadataBuilder[GDNAttentionMetadata]
self.speculative_config = vllm_config.speculative_config self.speculative_config = vllm_config.speculative_config
self.kv_cache_spec = kv_cache_spec self.kv_cache_spec = kv_cache_spec
if self.speculative_config: if self.speculative_config:
self.num_spec = self.speculative_config.num_speculative_tokens # noqa: E501 self.num_spec = self.speculative_config.num_speculative_tokens
else: else:
self.num_spec = 0 self.num_spec = 0
self.use_spec_decode = self.num_spec > 0 self.use_spec_decode = self.num_spec > 0