Run v1 benchmark and integrate with PyTorch OSS benchmark database (#13068)

Signed-off-by: Huy Do <huydhn@gmail.com>
This commit is contained in:
Huy Do 2025-02-17 00:16:32 -08:00 committed by GitHub
parent f857311d13
commit 45186834a0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 167 additions and 45 deletions

View File

@ -345,6 +345,11 @@ main() {
check_gpus
check_hf_token
# Set to v1 to run v1 benchmark
if [[ "${ENGINE_VERSION:-v0}" == "v1" ]]; then
export VLLM_USE_V1=1
fi
# dependencies
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
(which jq) || (apt-get update && apt-get -y install jq)

View File

@ -1,14 +1,17 @@
# SPDX-License-Identifier: Apache-2.0
"""Benchmark the latency of processing a single batch of requests."""
import argparse
import dataclasses
import json
import os
import time
from pathlib import Path
from typing import List, Optional
from typing import Any, Dict, List, Optional
import numpy as np
import torch
from benchmark_utils import convert_to_pytorch_benchmark_format
from tqdm import tqdm
from vllm import LLM, SamplingParams
@ -18,6 +21,19 @@ from vllm.sampling_params import BeamSearchParams
from vllm.utils import FlexibleArgumentParser
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: Dict[str, Any]) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={"latency": results["latencies"]},
extra_info={k: results[k]
for k in ["avg_latency", "percentiles"]})
if pt_records:
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
with open(pt_file, "w") as f:
json.dump(pt_records, f)
def main(args: argparse.Namespace):
print(args)
@ -54,7 +70,8 @@ def main(args: argparse.Namespace):
beam_width=args.n,
max_tokens=args.output_len,
ignore_eos=True,
))
),
)
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
@ -64,7 +81,8 @@ def main(args: argparse.Namespace):
torch.profiler.ProfilerActivity.CUDA,
],
on_trace_ready=torch.profiler.tensorboard_trace_handler(
str(profile_dir))) as p:
str(profile_dir)),
) as p:
llm_generate()
print(p.key_averages().table(sort_by="self_cuda_time_total"))
else:
@ -81,9 +99,8 @@ def main(args: argparse.Namespace):
if args.profile:
profile_dir = args.profile_result_dir
if not profile_dir:
profile_dir = Path(
"."
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
profile_dir = (Path(".") / "vllm_benchmark_result" /
f"latency_result_{time.time()}")
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=profile_dir)
return
@ -95,9 +112,9 @@ def main(args: argparse.Namespace):
latencies = np.array(latencies)
percentages = [10, 25, 50, 75, 90, 99]
percentiles = np.percentile(latencies, percentages)
print(f'Avg latency: {np.mean(latencies)} seconds')
print(f"Avg latency: {np.mean(latencies)} seconds")
for percentage, percentile in zip(percentages, percentiles):
print(f'{percentage}% percentile latency: {percentile} seconds')
print(f"{percentage}% percentile latency: {percentile} seconds")
# Output JSON results if specified
if args.output_json:
@ -108,43 +125,51 @@ def main(args: argparse.Namespace):
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
save_to_pytorch_benchmark_format(args, results)
if __name__ == '__main__':
if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Benchmark the latency of processing a single batch of '
'requests till completion.')
parser.add_argument('--input-len', type=int, default=32)
parser.add_argument('--output-len', type=int, default=128)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--n',
description="Benchmark the latency of processing a single batch of "
"requests till completion.")
parser.add_argument("--input-len", type=int, default=32)
parser.add_argument("--output-len", type=int, default=128)
parser.add_argument("--batch-size", type=int, default=8)
parser.add_argument(
"--n",
type=int,
default=1,
help='Number of generated sequences per prompt.')
parser.add_argument('--use-beam-search', action='store_true')
parser.add_argument('--num-iters-warmup',
help="Number of generated sequences per prompt.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument(
"--num-iters-warmup",
type=int,
default=10,
help='Number of iterations to run for warmup.')
parser.add_argument('--num-iters',
help="Number of iterations to run for warmup.",
)
parser.add_argument("--num-iters",
type=int,
default=30,
help='Number of iterations to run.')
help="Number of iterations to run.")
parser.add_argument(
'--profile',
action='store_true',
help='profile the generation process of a single batch')
"--profile",
action="store_true",
help="profile the generation process of a single batch",
)
parser.add_argument(
'--profile-result-dir',
"--profile-result-dir",
type=str,
default=None,
help=('path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'))
help=("path to save the pytorch profiler output. Can be visualized "
"with ui.perfetto.dev or Tensorboard."),
)
parser.add_argument(
'--output-json',
"--output-json",
type=str,
default=None,
help='Path to save the latency results in JSON format.')
help="Path to save the latency results in JSON format.",
)
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()

View File

@ -56,6 +56,8 @@ try:
except ImportError:
from argparse import ArgumentParser as FlexibleArgumentParser
from benchmark_utils import convert_to_pytorch_benchmark_format
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@ -817,6 +819,32 @@ def parse_goodput(slo_pairs):
return goodput_config_dict
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: Dict[str, Any],
file_name: str) -> None:
metrics = [
"median_ttft_ms", "mean_ttft_ms", "std_ttft_ms", "p99_ttft_ms",
"mean_tpot_ms", "median_tpot_ms", "std_tpot_ms", "p99_tpot_ms",
"median_itl_ms", "mean_itl_ms", "std_itl_ms", "p99_itl_ms"
]
# These raw data might be useful, but they are rather big. They can be added
# later if needed
ignored_metrics = ["ttfts", "itls", "generated_texts", "errors"]
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={k: [results[k]]
for k in metrics},
extra_info={
k: results[k]
for k in results if k not in metrics and k not in ignored_metrics
})
if pt_records:
# Don't use json suffix here as we don't want CI to pick it up
pt_file = f"{os.path.splitext(file_name)[0]}.pytorch.json"
with open(pt_file, "w") as f:
json.dump(pt_records, f)
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
@ -997,6 +1025,7 @@ def main(args: argparse.Namespace):
file_name = os.path.join(args.result_dir, file_name)
with open(file_name, "w", encoding='utf-8') as outfile:
json.dump(result_json, outfile)
save_to_pytorch_benchmark_format(args, result_json, file_name)
if __name__ == "__main__":
@ -1014,7 +1043,8 @@ if __name__ == "__main__":
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument("--host", type=str, default="localhost")
# Use 127.0.0.1 here instead of localhost to force the use of ipv4
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument(
"--endpoint",

View File

@ -731,7 +731,8 @@ if __name__ == "__main__":
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument("--host", type=str, default="localhost")
# Use 127.0.0.1 here instead of localhost to force the use of ipv4
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument(
"--endpoint",

View File

@ -3,13 +3,15 @@
import argparse
import dataclasses
import json
import os
import random
import time
from functools import cache
from typing import Dict, List, Optional, Tuple
from typing import Any, Dict, List, Optional, Tuple
import torch
import uvloop
from benchmark_utils import convert_to_pytorch_benchmark_format
from PIL import Image
from tqdm import tqdm
from transformers import (AutoModelForCausalLM, AutoTokenizer,
@ -338,6 +340,25 @@ def run_mii(
return end - start
def save_to_pytorch_benchmark_format(args: argparse.Namespace,
results: Dict[str, Any]) -> None:
pt_records = convert_to_pytorch_benchmark_format(
args=args,
metrics={
"requests_per_second": [results["requests_per_second"]],
"tokens_per_second": [results["tokens_per_second"]],
},
extra_info={
k: results[k]
for k in ["elapsed_time", "num_requests", "total_num_tokens"]
})
if pt_records:
# Don't use json suffix here as we don't want CI to pick it up
pt_file = f"{os.path.splitext(args.output_json)[0]}.pytorch.json"
with open(pt_file, "w") as f:
json.dump(pt_records, f)
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
@ -435,6 +456,7 @@ def main(args: argparse.Namespace):
}
with open(args.output_json, "w") as f:
json.dump(results, f, indent=4)
save_to_pytorch_benchmark_format(args, results)
if __name__ == "__main__":

View File

@ -0,0 +1,39 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
import os
from typing import Any, Dict, List
def convert_to_pytorch_benchmark_format(args: argparse.Namespace,
metrics: Dict[str, List],
extra_info: Dict[str, Any]) -> List:
"""
Save the benchmark results in the format used by PyTorch OSS benchmark with
on metric per record
https://github.com/pytorch/pytorch/wiki/How-to-integrate-with-PyTorch-OSS-benchmark-database
"""
records = []
if not os.environ.get("SAVE_TO_PYTORCH_BENCHMARK_FORMAT", False):
return records
for name, benchmark_values in metrics.items():
record = {
"benchmark": {
"name": "vLLM benchmark",
"extra_info": {
"args": vars(args),
},
},
"model": {
"name": args.model,
},
"metric": {
"name": name,
"benchmark_values": benchmark_values,
"extra_info": extra_info,
},
}
records.append(record)
return records