[Frontend][Bug] allow tool calls in analysis channel (#28139)

Signed-off-by: Marko Rosenmueller <5467316+dr75@users.noreply.github.com>
Co-authored-by: Chauncey <chaunceyjiang@gmail.com>
This commit is contained in:
Marko Rosenmueller 2025-12-19 11:47:44 +01:00 committed by GitHub
parent 086b96339f
commit 455949675d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 327 additions and 58 deletions

View File

@ -0,0 +1,212 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Unit tests for harmony streaming delta extraction.
"""
from dataclasses import dataclass, field
from unittest.mock import patch
import pytest
from vllm.entrypoints.openai.serving_chat_stream_harmony import (
extract_harmony_streaming_delta,
)
@dataclass
class MockMessage:
"""Mock message object for testing."""
channel: str | None = None
recipient: str | None = None
@dataclass
class MockStreamableParser:
"""Mock StreamableParser for testing without openai_harmony dependency."""
messages: list[MockMessage] = field(default_factory=list)
class TestExtractHarmonyStreamingDelta:
"""Tests for extract_harmony_streaming_delta function."""
@pytest.mark.parametrize(
"delta_text,expected_content",
[
("Hello, world!", "Hello, world!"),
("", ""),
],
)
def test_final_channel_returns_content_delta(self, delta_text, expected_content):
"""Test that final channel returns a DeltaMessage with content."""
parser = MockStreamableParser()
delta_message, tools_streamed = extract_harmony_streaming_delta(
harmony_parser=parser,
cur_channel="final",
cur_recipient=None,
prev_recipient=None,
delta_text=delta_text,
include_reasoning=False,
)
assert delta_message is not None
assert delta_message.content == expected_content
assert tools_streamed is False
@pytest.mark.parametrize(
"include_reasoning,expected_has_message",
[
(True, True),
(False, False),
],
)
def test_analysis_channel_reasoning(self, include_reasoning, expected_has_message):
"""Test analysis channel respects include_reasoning flag."""
parser = MockStreamableParser()
delta_message, tools_streamed = extract_harmony_streaming_delta(
harmony_parser=parser,
cur_channel="analysis",
cur_recipient=None,
prev_recipient=None,
delta_text="Let me think...",
include_reasoning=include_reasoning,
)
if expected_has_message:
assert delta_message is not None
assert delta_message.reasoning == "Let me think..."
else:
assert delta_message is None
assert tools_streamed is False
@pytest.mark.parametrize("channel", ["commentary", "analysis"])
@patch("vllm.entrypoints.openai.serving_chat_stream_harmony.make_tool_call_id")
def test_new_tool_call(self, mock_make_tool_call_id, channel):
"""Test new tool call creation when recipient changes."""
mock_make_tool_call_id.return_value = "call_test123"
parser = MockStreamableParser()
delta_message, tools_streamed = extract_harmony_streaming_delta(
harmony_parser=parser,
cur_channel=channel,
cur_recipient="functions.get_weather",
prev_recipient=None,
delta_text="",
include_reasoning=False,
)
assert delta_message is not None
assert len(delta_message.tool_calls) == 1
tool_call = delta_message.tool_calls[0]
assert tool_call.id == "call_test123"
assert tool_call.type == "function"
assert tool_call.function.name == "get_weather"
assert tool_call.function.arguments == ""
assert tool_call.index == 0
assert tools_streamed is True
@pytest.mark.parametrize("channel", ["commentary", "analysis"])
def test_tool_call_argument_streaming(self, channel):
"""Test streaming tool call arguments (same recipient)."""
parser = MockStreamableParser()
delta_message, tools_streamed = extract_harmony_streaming_delta(
harmony_parser=parser,
cur_channel=channel,
cur_recipient="functions.get_weather",
prev_recipient="functions.get_weather",
delta_text='{"location": "Paris"}',
include_reasoning=False,
)
assert delta_message is not None
tool_call = delta_message.tool_calls[0]
assert tool_call.id is None
assert tool_call.function.arguments == '{"location": "Paris"}'
assert tool_call.index == 0
assert tools_streamed is True
@pytest.mark.parametrize("channel", ["commentary", "analysis"])
def test_tool_call_empty_arguments_returns_none(self, channel):
"""Test empty delta_text with same recipient returns None."""
parser = MockStreamableParser()
delta_message, tools_streamed = extract_harmony_streaming_delta(
harmony_parser=parser,
cur_channel=channel,
cur_recipient="functions.get_weather",
prev_recipient="functions.get_weather",
delta_text="",
include_reasoning=False,
)
assert delta_message is None
assert tools_streamed is False
def test_tool_call_index_from_previous_messages(self):
"""Test tool call index accounts for previous function messages."""
messages = [
MockMessage(channel="analysis", recipient=None), # Not counted
MockMessage(channel="commentary", recipient="functions.tool1"), # Counted
MockMessage(channel="final", recipient=None), # Not counted
]
parser = MockStreamableParser(messages=messages)
delta_message, _ = extract_harmony_streaming_delta(
harmony_parser=parser,
cur_channel="commentary",
cur_recipient="functions.tool2",
prev_recipient="functions.tool2",
delta_text="args",
include_reasoning=False,
)
assert delta_message.tool_calls[0].index == 1
@pytest.mark.parametrize(
"channel,recipient",
[
("commentary", None),
("commentary", "browser.search"),
],
)
def test_returns_tool_call_preambles(self, channel, recipient):
"""Test that invalid channel/recipient combinations return None."""
parser = MockStreamableParser()
delta_text = "some text"
delta_message, tools_streamed = extract_harmony_streaming_delta(
harmony_parser=parser,
cur_channel=channel,
cur_recipient=recipient,
prev_recipient=None,
delta_text=delta_text,
include_reasoning=True,
)
assert delta_message.content == delta_text
assert tools_streamed is False
@pytest.mark.parametrize(
"channel,recipient",
[
(None, None),
("unknown_channel", None),
],
)
def test_returns_none_for_invalid_inputs(self, channel, recipient):
"""Test that invalid channel/recipient combinations return None."""
parser = MockStreamableParser()
delta_message, tools_streamed = extract_harmony_streaming_delta(
harmony_parser=parser,
cur_channel=channel,
cur_recipient=recipient,
prev_recipient=None,
delta_text="some text",
include_reasoning=True,
)
assert delta_message is None
assert tools_streamed is False

View File

@ -51,6 +51,9 @@ from vllm.entrypoints.openai.protocol import (
ToolCall,
UsageInfo,
)
from vllm.entrypoints.openai.serving_chat_stream_harmony import (
extract_harmony_streaming_delta,
)
from vllm.entrypoints.openai.serving_engine import (
GenerationError,
OpenAIServing,
@ -837,64 +840,17 @@ class OpenAIServingChat(OpenAIServing):
current_token_ids = as_list(output.token_ids)
if self.use_harmony:
if cur_channel == "final":
delta_message = DeltaMessage(content=delta_text)
elif cur_channel == "analysis":
if request.include_reasoning:
delta_message = DeltaMessage(reasoning=delta_text)
else:
delta_message = None
elif (
cur_channel == "commentary"
and cur_recipient
and cur_recipient.startswith("functions.")
):
# Count completed tool calls to determine index
base_index = 0
for msg in harmony_parser.messages:
if (
msg.channel == "commentary"
and msg.recipient
and msg.recipient.startswith("functions.")
):
base_index += 1
if prev_recipient != cur_recipient:
tool_name = cur_recipient.split("functions.", 1)[1]
delta_message = DeltaMessage(
tool_calls=[
DeltaToolCall(
id=make_tool_call_id(),
type="function",
function=DeltaFunctionCall(
name=tool_name,
arguments="",
),
index=base_index,
)
]
)
elif delta_text:
delta_message = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=base_index,
function=DeltaFunctionCall(
arguments=delta_text
),
)
]
)
else:
delta_message = None
if delta_message is not None:
harmony_tools_streamed[i] = True
elif cur_channel == "commentary":
# Tool call preambles meant to be shown to the user
delta_message = DeltaMessage(content=delta_text)
else:
delta_message = None
delta_message, tools_streamed_flag = (
extract_harmony_streaming_delta(
harmony_parser=harmony_parser,
cur_channel=cur_channel,
cur_recipient=cur_recipient,
prev_recipient=prev_recipient,
delta_text=delta_text,
include_reasoning=request.include_reasoning,
)
)
harmony_tools_streamed[i] |= tools_streamed_flag
# handle streaming deltas for tools with named tool_choice
elif tool_choice_function_name:
if (

View File

@ -0,0 +1,101 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Harmony-specific streaming delta extraction for chat completions.
This module handles the extraction of DeltaMessage objects from
harmony parser state during streaming chat completions.
"""
from openai_harmony import StreamableParser
from vllm.entrypoints.chat_utils import make_tool_call_id
from vllm.entrypoints.openai.protocol import (
DeltaFunctionCall,
DeltaMessage,
DeltaToolCall,
)
def extract_harmony_streaming_delta(
harmony_parser: StreamableParser,
cur_channel: str | None,
cur_recipient: str | None,
prev_recipient: str | None,
delta_text: str,
include_reasoning: bool,
) -> tuple[DeltaMessage | None, bool]:
"""
Extract a DeltaMessage from harmony parser state during streaming.
Args:
harmony_parser: The StreamableParser instance tracking parse state
cur_channel: Current channel ("final", "analysis", "commentary", etc.)
cur_recipient: Current recipient (e.g., "functions.my_func")
prev_recipient: Previous recipient for detecting tool call transitions
delta_text: The text delta to include in the message
include_reasoning: Whether to include reasoning content
Returns:
A tuple of (DeltaMessage or None, tools_streamed_flag)
"""
tools_streamed = False
if cur_channel == "final":
delta_message = DeltaMessage(content=delta_text)
elif (
(cur_channel == "commentary" or cur_channel == "analysis")
and cur_recipient
and cur_recipient.startswith("functions.")
):
# Count completed tool calls to determine index
base_index = 0
for msg in harmony_parser.messages:
if (
(msg.channel == "commentary" or msg.channel == "analysis")
and msg.recipient
and msg.recipient.startswith("functions.")
):
base_index += 1
if prev_recipient != cur_recipient:
tool_name = cur_recipient.split("functions.", 1)[1]
delta_message = DeltaMessage(
tool_calls=[
DeltaToolCall(
id=make_tool_call_id(),
type="function",
function=DeltaFunctionCall(
name=tool_name,
arguments="",
),
index=base_index,
)
]
)
elif delta_text:
delta_message = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=base_index,
function=DeltaFunctionCall(arguments=delta_text),
)
]
)
else:
delta_message = None
if delta_message is not None:
tools_streamed = True
elif cur_channel == "commentary":
# Tool call preambles meant to be shown to the user
delta_message = DeltaMessage(content=delta_text)
elif cur_channel == "analysis":
if include_reasoning:
delta_message = DeltaMessage(reasoning=delta_text)
else:
delta_message = None
else:
delta_message = None
return delta_message, tools_streamed