[Bugfix] Fix disagg hang caused by the prefill and decode communication issues (#12723)

Signed-off-by: Lu Fang <lufang@fb.com>
This commit is contained in:
Lu Fang 2025-02-07 16:39:50 -08:00 committed by GitHub
parent 932c6b7461
commit 45cbc4991d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -10,7 +10,6 @@
stop the prefill instance when the decode instance is slow.
"""
import threading
import time
from collections import deque
from typing import Deque, List, Optional, Union
@ -29,13 +28,13 @@ class SimpleBuffer(KVLookupBufferBase):
def __init__(self, signal_pipe: KVPipeBase, data_pipe: KVPipeBase,
buffer_size_thresh: float):
"""
signal_pipe: on CPU
NOTE: on-device recv will block all threads in the process, making the
KV cache producer unable to listen to new request while transmitting
KV cache. Luckily CPU recv only blocks the current thread so we use
signal_pipe: on CPU
NOTE: on-device recv will block all threads in the process, making the
KV cache producer unable to listen to new request while transmitting
KV cache. Luckily CPU recv only blocks the current thread so we use
CPU recv to listen to new request.
data_pipe: on device (e.g. GPU)
"""
@ -43,7 +42,7 @@ class SimpleBuffer(KVLookupBufferBase):
self.buffer_size = 0
self.buffer_size_threshold = buffer_size_thresh
self.buffer_lock = threading.Lock()
self.buffer_cv = threading.Condition()
self.signal_pipe = signal_pipe
self.data_pipe = data_pipe
self.request_handling_thread: Optional[threading.Thread] = None
@ -116,11 +115,19 @@ class SimpleBuffer(KVLookupBufferBase):
hidden = hidden.clone()
buffer_item = [input_tokens, roi, key, value, hidden]
data_size = sum([self._get_element_size(data) for data in buffer_item])
with self.buffer_lock:
for data in buffer_item:
self.buffer_size += self._get_element_size(data)
with self.buffer_cv:
if self.buffer_size + data_size > self.buffer_size_threshold:
# log outside the while loop to avoid this message being logged
# repeatedly.
logger.debug("KV transfer buffer is full. Handling...")
while self.buffer_size + data_size > self.buffer_size_threshold:
self.buffer_cv.wait()
self.buffer_size += data_size
self.buffer.append(buffer_item)
self.buffer_cv.notify()
def _is_end_signal(self, signal):
return signal is None
@ -143,35 +150,31 @@ class SimpleBuffer(KVLookupBufferBase):
roi = (roi > 0.5)
tokens_roi_recver = [input_tokens, roi]
matched_length = 0
# perform input tokens and roi matching
# FIXME: this matching is O(n), ideally it should be O(1)
# but this buffer size won't (and shouldn't) be too large so
# the fix is not urgent.
with self.buffer_lock:
def is_buffer_available(
tokens_roi_recver: List[torch.Tensor], ) -> bool:
# perform input tokens and roi matching
# FIXME: this matching is O(n), ideally it should be O(1)
# but this buffer size won't (and shouldn't) be too large so
# the fix is not urgent.
for _ in range(len(self.buffer)):
temp_length = self._matches(self.buffer[0],
tokens_roi_recver)
if temp_length > 0:
matched_length = temp_length
break
if self._matches(self.buffer[0],
tokens_roi_recver) > 0:
return True
# rotate the element we just accessed to the end
self.buffer.rotate(-1)
return False
if matched_length > 0:
# need to clone the tensor
# in case the tensor is freed before sending finishes
matched_item = self.buffer.popleft()
for tensor in matched_item:
self._send_tensor_and_dec_size(tensor)
else:
# no match, just send None
for _ in range(5):
self.data_pipe.send_tensor(None)
with self.buffer_cv:
while not is_buffer_available(tokens_roi_recver):
logger.debug(
"KV transfer buffer is not available. Waiting...")
self.buffer_cv.wait()
# need to clone the tensor
# in case the tensor is freed before sending finishes
matched_item = self.buffer.popleft()
for tensor in matched_item:
self._send_tensor_and_dec_size(tensor)
self.buffer_cv.notify()
except RuntimeError as e:
if 'Connection closed by peer' not in str(e):
@ -208,20 +211,10 @@ class SimpleBuffer(KVLookupBufferBase):
return [input_tokens, roi, key, value, hidden]
def full_handler(self):
time.sleep(0.001)
def insert(self, input_tokens: torch.Tensor, roi: torch.Tensor,
key: torch.Tensor, value: torch.Tensor,
hidden: torch.Tensor) -> None:
if self.buffer_size > self.buffer_size_threshold:
# log outside the while loop to avoid this message being logged
# repeatedly.
logger.debug("KV transfer buffer is full. Handling...")
while self.buffer_size > self.buffer_size_threshold:
self.full_handler()
self._add_to_buffer(input_tokens, roi, key, value, hidden)
# when calling the insert, the current process is a sender