mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-11 00:44:57 +08:00
Migrate MiniCPMVImageInputs to TensorSchema (#21939)
Signed-off-by: Benji Beck <benjibeck@meta.com>
This commit is contained in:
parent
93d0652433
commit
4678503476
@ -27,7 +27,7 @@ import math
|
||||
from collections import defaultdict
|
||||
from collections.abc import Iterable, Mapping, Sequence
|
||||
from functools import partial
|
||||
from typing import Any, Callable, Literal, Optional, TypedDict, Union
|
||||
from typing import Annotated, Any, Callable, Literal, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@ -63,6 +63,7 @@ from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils import flatten_2d_lists
|
||||
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
||||
|
||||
from .idefics2_vision_model import Idefics2VisionTransformer
|
||||
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
|
||||
@ -74,36 +75,47 @@ from .utils import (AutoWeightsLoader, flatten_bn, maybe_prefix,
|
||||
_MAX_FRAMES_PER_VIDEO = 16
|
||||
|
||||
|
||||
class MiniCPMVImagePixelInputs(TypedDict):
|
||||
type: Literal["pixel_values"]
|
||||
pixel_values: list[torch.Tensor]
|
||||
class MiniCPMVImagePixelInputs(TensorSchema):
|
||||
"""
|
||||
Shape: `(batch_size * num_images * num_slices, num_channels, height, width)`
|
||||
|
||||
Note that the image size may vary, so we pass it as a list
|
||||
instead of a batched tensor.
|
||||
Dimensions:
|
||||
- bns: Batch size * number of images * number of slices
|
||||
- bn: Batch size * number of images
|
||||
- c: Number of channels
|
||||
- h: Height
|
||||
- w: Width
|
||||
"""
|
||||
|
||||
tgt_sizes: torch.Tensor
|
||||
"""
|
||||
Shape: `(batch_size * num_images * num_slices, 2)`
|
||||
type: Literal["pixel_values"] = "pixel_values"
|
||||
|
||||
This should be in `(height, width)` format.
|
||||
# Note that the image size may vary, so we pass it as a list instead of a
|
||||
# batched tensor.
|
||||
pixel_values: Annotated[
|
||||
list[torch.Tensor],
|
||||
TensorShape("bns", "c", "h", "w"),
|
||||
]
|
||||
tgt_sizes: Annotated[
|
||||
torch.Tensor,
|
||||
TensorShape("bns", 2), # This should be in `(height, width)` format.
|
||||
]
|
||||
num_slices: Annotated[
|
||||
torch.Tensor,
|
||||
TensorShape("bn"),
|
||||
]
|
||||
|
||||
|
||||
class MiniCPMVImageEmbeddingInputs(TensorSchema):
|
||||
"""
|
||||
Dimensions:
|
||||
- bn: Batch size * number of images
|
||||
- ns: Number of slices
|
||||
- hs: Hidden size (must match language model backbone)
|
||||
"""
|
||||
|
||||
num_slices: torch.Tensor
|
||||
"""Shape: `(batch_size * num_images)`"""
|
||||
|
||||
|
||||
class MiniCPMVImageEmbeddingInputs(TypedDict):
|
||||
type: Literal["image_embeds"]
|
||||
image_embeds: Union[torch.Tensor, list[torch.Tensor]]
|
||||
"""
|
||||
Shape: `(batch_size * num_images, num_slices, hidden_size)`
|
||||
|
||||
`hidden_size` must match the hidden size of language model backbone.
|
||||
instead of a batched tensor.
|
||||
"""
|
||||
image_embeds: Annotated[
|
||||
Union[torch.Tensor, list[torch.Tensor]],
|
||||
TensorShape("bn", "ns", "hs"),
|
||||
]
|
||||
|
||||
|
||||
MiniCPMVImageInputs = Union[MiniCPMVImagePixelInputs,
|
||||
@ -832,11 +844,6 @@ class MiniCPMVBaseModel(nn.Module, SupportsMultiModal, SupportsPP):
|
||||
pixel_values_flat = flatten_bn(flatten_2d_lists(pixel_values))
|
||||
tgt_sizes_flat = flatten_bn(flatten_2d_lists(tgt_sizes), concat=True)
|
||||
|
||||
if len(pixel_values_flat) != len(tgt_sizes_flat):
|
||||
raise ValueError("Inconsistent flattened lengths, found: "
|
||||
f"{len(pixel_values_flat)} vs. "
|
||||
f"{len(tgt_sizes_flat)}")
|
||||
|
||||
return MiniCPMVImagePixelInputs(
|
||||
type="pixel_values",
|
||||
pixel_values=pixel_values_flat,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user