[V1] port xformers backend to v1 (#21342)

Signed-off-by: Giancarlo Delfin <gdelfin@meta.com>
This commit is contained in:
Giancarlo Delfin 2025-08-05 10:04:46 -07:00 committed by GitHub
parent ae87ddd040
commit 469b3ffaaa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 438 additions and 1 deletions

View File

@ -128,6 +128,8 @@ def get_attention_backend(backend_name: _Backend):
"vllm.v1.attention.backends.triton_attn.TritonAttentionBackend",
_Backend.TREE_ATTN:
"vllm.v1.attention.backends.tree_attn.TreeAttentionBackend",
_Backend.XFORMERS_VLLM_V1:
"vllm.v1.attention.backends.xformers.XFormersAttentionBackend",
}
if backend_name not in backend_map:

View File

@ -1469,6 +1469,7 @@ class EngineArgs:
"TORCH_SDPA_VLLM_V1",
"FLEX_ATTENTION",
"TREE_ATTN",
"XFORMERS_VLLM_V1",
]
if (envs.is_set("VLLM_ATTENTION_BACKEND")
and envs.VLLM_ATTENTION_BACKEND not in V1_BACKENDS):

View File

@ -271,6 +271,7 @@ class CudaPlatformBase(Platform):
TRITON_ATTN_VLLM_V1 = "vllm.v1.attention.backends.triton_attn.TritonAttentionBackend" # noqa: E501
FLASH_ATTN_V1 = "vllm.v1.attention.backends.flash_attn.FlashAttentionBackend" # noqa: E501
TREE_ATTN_V1 = "vllm.v1.attention.backends.tree_attn.TreeAttentionBackend" # noqa: E501
XFORMERS_V1 = "vllm.v1.attention.backends.xformers.XFormersAttentionBackend" # noqa: E501
if selected_backend == _Backend.FLASHINFER:
logger.info_once("Using FlashInfer backend on V1 engine.")
@ -291,6 +292,9 @@ class CudaPlatformBase(Platform):
elif selected_backend == _Backend.TREE_ATTN:
logger.info_once("Using Tree Attention backend on V1 engine.")
return TREE_ATTN_V1
elif selected_backend == _Backend.XFORMERS_VLLM_V1:
logger.info_once("Using XFormers backend on V1 engine.")
return XFORMERS_V1
from vllm.attention.selector import is_attn_backend_supported

View File

@ -63,6 +63,7 @@ class _Backend(enum.Enum):
NO_ATTENTION = enum.auto()
FLEX_ATTENTION = enum.auto()
TREE_ATTN = enum.auto()
XFORMERS_VLLM_V1 = enum.auto()
class PlatformEnum(enum.Enum):

View File

@ -316,7 +316,6 @@ class TreeAttentionImpl(AttentionImpl):
logits_soft_cap: Optional[float] = None,
attn_type: AttentionType = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
use_irope: bool = False,
) -> None:
self.num_heads = num_heads
self.head_size = head_size

View File

@ -0,0 +1,430 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Attention layer with XFormersAttention."""
from dataclasses import dataclass
from typing import TYPE_CHECKING, Optional
import torch
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionMetadata, AttentionType)
from vllm.attention.ops.triton_unified_attention import unified_attention
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.v1.attention.backends.utils import (
AttentionMetadataBuilder, CommonAttentionMetadata,
reorder_batch_to_split_decodes_and_prefills, split_decodes_and_prefills)
from vllm.v1.kv_cache_interface import AttentionSpec
try:
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import (
AttentionBias, PagedBlockDiagonalCausalWithOffsetPaddedKeysMask)
XFORMERS_AVAILABLE = True
except ImportError:
XFORMERS_AVAILABLE = False
if TYPE_CHECKING:
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.worker.gpu_input_batch import InputBatch
from vllm import _custom_ops as ops
logger = init_logger(__name__)
class XFormersAttentionBackend(AttentionBackend):
accept_output_buffer: bool = True
@classmethod
def get_supported_dtypes(cls) -> list[torch.dtype]:
return [torch.float16, torch.bfloat16]
@classmethod
def get_supported_head_sizes(cls) -> list[int]:
return [
32,
40,
48,
56,
64,
72,
80,
88,
96,
104,
112,
120,
128,
136,
144,
152,
160,
168,
176,
184,
192,
200,
208,
216,
224,
232,
240,
248,
256,
]
@classmethod
def validate_head_size(cls, head_size: int) -> None:
supported_head_sizes = cls.get_supported_head_sizes()
if head_size not in supported_head_sizes:
attn_type = cls.__name__.removesuffix("Backend")
raise ValueError(
f"Head size {head_size} is not supported by {attn_type}. "
f"Supported head sizes are: {supported_head_sizes}. "
"Set VLLM_ATTENTION_BACKEND=FLEX_ATTENTION to use "
"FlexAttention backend which supports all head sizes.")
@staticmethod
def get_name() -> str:
return "XFORMERS_VLLM_V1"
@staticmethod
def get_impl_cls() -> type["XFormersAttentionImpl"]:
return XFormersAttentionImpl
@staticmethod
def get_metadata_cls() -> type["AttentionMetadata"]:
return XFormersAttentionMetadata
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> tuple[int, ...]:
if block_size % 16 != 0:
raise ValueError("Block size must be a multiple of 16.")
return (2, num_blocks, block_size, num_kv_heads, head_size)
@staticmethod
def get_builder_cls() -> type["XFormersAttentionMetadataBuilder"]:
return XFormersAttentionMetadataBuilder
@staticmethod
def use_cascade_attention(*args, **kwargs) -> bool:
return False
@dataclass
class XFormersAttentionMetadata:
num_actual_tokens: int # Number of tokens excluding padding.
max_query_len: int
query_start_loc: torch.Tensor
max_seq_len: int
seq_lens: torch.Tensor
block_table: torch.Tensor
slot_mapping: torch.Tensor
num_prefill_tokens: int = 0
num_decode_tokens: int = 0
num_prefills: int = 0
num_decodes: int = 0
# Biases for different attention types.
attn_bias: Optional["AttentionBias"] = None
# Self-attention prefill/decode metadata cache
_cached_prefill_metadata: Optional["XFormersAttentionMetadata"] = None
_cached_decode_metadata: Optional["XFormersAttentionMetadata"] = None
@property
def prefill_metadata(self) -> Optional["XFormersAttentionMetadata"]:
if self.num_prefills == 0:
return None
if self._cached_prefill_metadata is not None:
# Recover cached prefill-phase attention
# metadata structure
return self._cached_prefill_metadata
q_start_loc = self.query_start_loc[self.num_decodes:]
q_seqlens = torch.diff(q_start_loc)
kv_seqlens = self.seq_lens[self.num_decodes:]
# Construct & cache prefill-phase attention metadata structure
self._cached_prefill_metadata = XFormersAttentionMetadata(
num_actual_tokens=self.num_prefill_tokens,
max_query_len=int(q_seqlens.max().item()),
query_start_loc=q_start_loc - q_start_loc[0],
max_seq_len=int(kv_seqlens.max().item()),
seq_lens=kv_seqlens,
block_table=self.block_table[self.num_decodes:],
slot_mapping=self.slot_mapping[self.num_decode_tokens:],
)
return self._cached_prefill_metadata
@property
def decode_metadata(self) -> Optional["XFormersAttentionMetadata"]:
if self.num_decode_tokens == 0:
return None
if self._cached_decode_metadata is not None:
# Recover cached decode-phase attention
# metadata structure
return self._cached_decode_metadata
q_start_loc = self.query_start_loc
q_seqlens = torch.diff(q_start_loc)
decode_kv_seqlens = self.seq_lens[:self.num_decodes]
# Construct & cache decode-phase attention metadata structure
self._cached_decode_metadata = XFormersAttentionMetadata(
num_actual_tokens=self.num_decode_tokens,
max_query_len=int(q_seqlens[:self.num_decodes].max().item()),
query_start_loc=q_start_loc[:self.num_decodes + 1],
max_seq_len=int(decode_kv_seqlens.max().item()),
seq_lens=decode_kv_seqlens,
block_table=self.block_table[:self.num_decodes],
slot_mapping=self.slot_mapping[:self.num_decode_tokens],
attn_bias=self.attn_bias,
)
return self._cached_decode_metadata
class XFormersAttentionMetadataBuilder(
AttentionMetadataBuilder[XFormersAttentionMetadata]):
def __init__(
self,
kv_cache_spec: AttentionSpec,
layer_names: list[str],
vllm_config: VllmConfig,
device: torch.device,
):
assert XFORMERS_AVAILABLE
self.kv_cache_spec = kv_cache_spec
self.block_size = kv_cache_spec.block_size
self._num_decodes = 0
self._num_decode_tokens = 0
def reorder_batch(self, input_batch: "InputBatch",
scheduler_output: "SchedulerOutput") -> bool:
return reorder_batch_to_split_decodes_and_prefills(input_batch,
scheduler_output,
decode_threshold=1)
def build(
self,
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
fast_build: bool = False,
) -> XFormersAttentionMetadata:
num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = (
split_decodes_and_prefills(common_attn_metadata,
decode_threshold=1))
num_actual_tokens = common_attn_metadata.num_actual_tokens
q_start_loc = common_attn_metadata.query_start_loc
q_seqlens = torch.diff(q_start_loc)
max_query_len = common_attn_metadata.max_query_len
kv_seqlens = common_attn_metadata.seq_lens
max_seq_len = int(common_attn_metadata.seq_lens_cpu.max())
block_table = common_attn_metadata.block_table_tensor
slot_mapping = common_attn_metadata.slot_mapping
bias = None
if num_decodes > 0:
# Construct the decoder bias.
decode_q_seqlens = q_seqlens[:num_decodes]
decode_kv_seqlens = kv_seqlens[:num_decodes]
bias = (
PagedBlockDiagonalCausalWithOffsetPaddedKeysMask.from_seqlens(
q_seqlen=decode_q_seqlens.tolist(),
kv_seqlen=decode_kv_seqlens.tolist(),
page_size=self.block_size,
block_tables=block_table[:num_decodes],
device=block_table.device,
))
return XFormersAttentionMetadata(
num_actual_tokens=num_actual_tokens,
num_prefill_tokens=num_prefill_tokens,
num_decode_tokens=num_decode_tokens,
num_prefills=num_prefills,
num_decodes=num_decodes,
max_query_len=max_query_len,
query_start_loc=q_start_loc,
max_seq_len=max_seq_len,
seq_lens=kv_seqlens,
block_table=block_table,
slot_mapping=slot_mapping,
attn_bias=bias,
)
class XFormersAttentionImpl(AttentionImpl):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float] = None,
attn_type: AttentionType = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
) -> None:
if kv_sharing_target_layer_name is not None:
raise NotImplementedError("KV sharing is not supported in V0.")
if alibi_slopes is not None:
raise NotImplementedError(
"XFormers does not support alibi slopes yet.")
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
self.kv_cache_dtype = kv_cache_dtype
self.kv_sharing_target_layer_name = kv_sharing_target_layer_name
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
self.alibi_slopes = alibi_slopes
if sliding_window is None:
self.sliding_window = (-1, -1)
else:
self.sliding_window = (sliding_window - 1, 0)
if logits_soft_cap is None:
# Setting logits_soft_cap to 0 means no soft cap.
logits_soft_cap = 0
self.logits_soft_cap = logits_soft_cap
XFormersAttentionBackend.validate_head_size(head_size)
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"XFormersAttentionImpl.")
def forward(
self,
layer: torch.nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: XFormersAttentionMetadata,
output: Optional[torch.Tensor] = None,
output_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with XFormers.
Args:
query: shape = [num_tokens, num_heads, head_size]
key: shape = [num_tokens, num_kv_heads, head_size]
value: shape = [num_tokens, num_kv_heads, head_size]
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
assert output is not None, "Output tensor must be provided."
if output_scale is not None:
raise NotImplementedError(
"fused output quantization is not yet supported"
" for XFormersAttentionImpl")
if attn_metadata is None:
# Profiling run.
return output
# Cache the input KVs.
key_cache, value_cache = kv_cache.unbind(0)
if self.kv_sharing_target_layer_name is None:
# Reshape the input keys and values and store them in the cache.
# Skip this if sharing KV cache with an earlier attention layer.
# NOTE(woosuk): Here, key and value are padded while slot_mapping is
# not padded. However, we don't need to do key[:num_actual_tokens]
# and value[:num_actual_tokens] because the reshape_and_cache_flash
# op uses the slot_mapping's shape to determine the number of
# actual tokens.
ops.reshape_and_cache_flash(
key,
value,
key_cache,
value_cache,
attn_metadata.slot_mapping,
self.kv_cache_dtype,
layer._k_scale,
layer._v_scale,
)
num_actual_tokens = attn_metadata.num_actual_tokens
num_decode_tokens = attn_metadata.num_decode_tokens
if prefill_meta := attn_metadata.prefill_metadata:
descale_shape = (prefill_meta.query_start_loc.shape[0] - 1,
key.shape[1])
unified_attention(
q=query[num_decode_tokens:num_actual_tokens],
k=key_cache,
v=value_cache,
out=output[num_decode_tokens:num_actual_tokens],
cu_seqlens_q=prefill_meta.query_start_loc,
max_seqlen_q=prefill_meta.max_query_len,
seqused_k=prefill_meta.seq_lens,
max_seqlen_k=prefill_meta.max_seq_len,
softmax_scale=self.scale,
causal=True,
alibi_slopes=self.alibi_slopes,
window_size=self.sliding_window,
block_table=prefill_meta.block_table,
softcap=self.logits_soft_cap,
q_descale=None, # Not supported
k_descale=layer._k_scale.expand(descale_shape),
v_descale=layer._v_scale.expand(descale_shape),
)
if decode_meta := attn_metadata.decode_metadata:
# Query for decode. KV is not needed because it is already cached.
decode_query = query[:num_decode_tokens]
# Reshape query to [1, B_T, G, H, D].
q = decode_query.view(1, -1, self.num_kv_heads,
self.num_queries_per_kv, self.head_size)
# Reshape the k and v caches to [1, Bkv_T, G, H, D]
cache_k = key_cache.view(1, -1, self.num_kv_heads, 1,
self.head_size).expand(
1,
-1,
self.num_kv_heads,
self.num_queries_per_kv,
self.head_size,
)
cache_v = value_cache.view(1, -1, self.num_kv_heads, 1,
self.head_size).expand(
1,
-1,
self.num_kv_heads,
self.num_queries_per_kv,
self.head_size,
)
attn_bias = decode_meta.attn_bias
output[:
num_decode_tokens] = xops.memory_efficient_attention_forward(
q,
cache_k,
cache_v,
attn_bias=attn_bias,
p=0.0,
scale=self.scale,
).view(decode_query.shape)
# Reshape the output tensor.
return output