[hardware][misc] introduce platform abstraction (#6080)

This commit is contained in:
youkaichao 2024-07-02 20:12:22 -07:00 committed by GitHub
parent 9d6a8daa87
commit 482045ee77
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
16 changed files with 113 additions and 29 deletions

View File

@ -8,13 +8,13 @@ import pytest
import torch
from vllm import _custom_ops as ops
from vllm.utils import get_device_capability_stateless
from vllm.platforms import current_platform
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
capability = get_device_capability_stateless()
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]

View File

@ -1,7 +1,7 @@
import torch
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
from vllm.utils import get_device_capability_stateless
from vllm.platforms import current_platform
def is_quant_method_supported(quant_method: str) -> bool:
@ -9,7 +9,7 @@ def is_quant_method_supported(quant_method: str) -> bool:
if not torch.cuda.is_available():
return False
capability = get_device_capability_stateless()
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
return (capability >=
QUANTIZATION_METHODS[quant_method].get_min_capability())

View File

@ -2,13 +2,14 @@ import math
import torch
from vllm.utils import get_device_capability_stateless, is_cpu, is_hip
from vllm.platforms import current_platform
from vllm.utils import is_cpu, is_hip
from .utils import (dense_to_crow_col, get_head_sliding_step,
get_sparse_attn_mask)
IS_COMPUTE_8_OR_ABOVE = (torch.cuda.is_available()
and get_device_capability_stateless()[0] >= 8)
and current_platform.get_device_capability()[0] >= 8)
if IS_COMPUTE_8_OR_ABOVE:
from .blocksparse_attention_kernel import blocksparse_flash_attn_varlen_fwd

View File

@ -5,7 +5,7 @@ import torch
import triton
import triton.language as tl
from vllm.utils import get_device_capability_stateless
from vllm.platforms import current_platform
if triton.__version__ >= "2.1.0":
@ -685,7 +685,7 @@ if triton.__version__ >= "2.1.0":
alibi_slopes=None,
sliding_window=None):
cap = get_device_capability_stateless()
cap = current_platform.get_device_capability()
BLOCK = 128 if cap[0] >= 8 else 64
# shape constraints
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]

View File

@ -5,14 +5,14 @@ from typing import Optional
import torch
from vllm import _custom_ops as ops
from vllm.utils import get_device_capability_stateless
from vllm.platforms import current_platform
def _check_punica_support():
if ops.is_custom_op_supported("_punica_C::dispatch_bgmv"):
return
if get_device_capability_stateless() < (8, 0):
if current_platform.get_device_capability() < (8, 0):
raise ImportError(
"punica LoRA kernels require compute capability >= 8.0")
else:

View File

@ -14,7 +14,7 @@ from vllm.model_executor.layers.quantization.compressed_tensors.schemes import (
from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
CompressionFormat, QuantizationArgs, QuantizationStrategy,
find_first_name_or_class_match)
from vllm.utils import get_device_capability_stateless
from vllm.platforms import current_platform
class CompressedTensorsConfig(QuantizationConfig):
@ -85,7 +85,7 @@ class CompressedTensorsConfig(QuantizationConfig):
return []
def _check_gptq_and_marlin_can_run(self):
capability = get_device_capability_stateless()
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
if capability < 80:
raise RuntimeError("The quantization config is not supported for ",

View File

@ -12,7 +12,8 @@ from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.utils import set_weight_attrs
from vllm.utils import get_device_capability_stateless, print_warning_once
from vllm.platforms import current_platform
from vllm.utils import print_warning_once
ACTIVATION_SCHEMES = ["static", "dynamic"]
@ -20,7 +21,7 @@ logger = init_logger(__name__)
def cutlass_fp8_supported() -> bool:
capability = get_device_capability_stateless()
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
return ops.cutlass_scaled_mm_supports_fp8(capability)

View File

@ -12,7 +12,7 @@ from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.utils import get_device_capability_stateless
from vllm.platforms import current_platform
logger = init_logger(__name__)
@ -173,7 +173,7 @@ class GPTQMarlinConfig(QuantizationConfig):
return False
# If the capability of the device is too low, cannot convert.
major, minor = get_device_capability_stateless()
major, minor = current_platform.get_device_capability()
device_capability = major * 10 + minor
if device_capability < cls.get_min_capability():
return False

View File

@ -12,9 +12,9 @@ from vllm.model_executor.layers.quantization.utils.marlin_perms import (
marlin_perm, marlin_scale_perm, marlin_scale_perm_single)
from vllm.model_executor.layers.quantization.utils.quant_utils import (
get_pack_factor, quantize_weights, sort_weights)
from vllm.utils import get_device_capability_stateless
from vllm.platforms import current_platform
__cuda_arch = get_device_capability_stateless()
__cuda_arch = current_platform.get_device_capability()
MARLIN_TILE = 16

View File

@ -35,7 +35,8 @@ from vllm.model_executor.model_loader.weight_utils import (
from vllm.model_executor.models.interfaces import (supports_lora,
supports_vision)
from vllm.model_executor.utils import set_weight_attrs
from vllm.utils import get_device_capability_stateless, is_tpu
from vllm.platforms import current_platform
from vllm.utils import is_tpu
logger = init_logger(__name__)
@ -46,7 +47,7 @@ def _get_quantization_config(
"""Get the quantization config."""
if model_config.quantization is not None:
quant_config = get_quant_config(model_config, load_config)
capability = get_device_capability_stateless()
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
if capability < quant_config.get_min_capability():
raise ValueError(

View File

@ -0,0 +1,18 @@
from typing import Optional
import torch
from .interface import Platform, PlatformEnum
current_platform: Optional[Platform]
if torch.version.cuda is not None:
from .cuda import CudaPlatform
current_platform = CudaPlatform()
elif torch.version.hip is not None:
from .rocm import RocmPlatform
current_platform = RocmPlatform()
else:
current_platform = None
__all__ = ['Platform', 'PlatformEnum', 'current_platform']

34
vllm/platforms/cuda.py Normal file
View File

@ -0,0 +1,34 @@
"""Code inside this file can safely assume cuda platform, e.g. importing
pynvml. However, it should not initialize cuda context.
"""
from functools import lru_cache, wraps
from typing import Tuple
import pynvml
from .interface import Platform, PlatformEnum
def with_nvml_context(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
pynvml.nvmlInit()
try:
return fn(*args, **kwargs)
finally:
pynvml.nvmlShutdown()
return wrapper
class CudaPlatform(Platform):
_enum = PlatformEnum.CUDA
@staticmethod
@lru_cache(maxsize=8)
@with_nvml_context
def get_device_capability(device_id: int = 0) -> Tuple[int, int]:
handle = pynvml.nvmlDeviceGetHandleByIndex(device_id)
return pynvml.nvmlDeviceGetCudaComputeCapability(handle)

View File

@ -0,0 +1,21 @@
import enum
from typing import Tuple
class PlatformEnum(enum.Enum):
CUDA = enum.auto()
ROCM = enum.auto()
class Platform:
_enum: PlatformEnum
def is_cuda(self) -> bool:
return self._enum == PlatformEnum.CUDA
def is_rocm(self) -> bool:
return self._enum == PlatformEnum.ROCM
@staticmethod
def get_device_capability(device_id: int = 0) -> Tuple[int, int]:
raise NotImplementedError

15
vllm/platforms/rocm.py Normal file
View File

@ -0,0 +1,15 @@
from functools import lru_cache
from typing import Tuple
import torch
from .interface import Platform, PlatformEnum
class RocmPlatform(Platform):
_enum = PlatformEnum.ROCM
@staticmethod
@lru_cache(maxsize=8)
def get_device_capability(device_id: int = 0) -> Tuple[int, int]:
return torch.cuda.get_device_capability(device_id)

View File

@ -866,13 +866,6 @@ def is_full_nvlink(device_ids: List[int]) -> bool:
return True
@lru_cache(maxsize=8)
@with_nvml_context
def get_device_capability_stateless(device_id: int = 0) -> Tuple[int, int]:
handle = pynvml.nvmlDeviceGetHandleByIndex(device_id)
return pynvml.nvmlDeviceGetCudaComputeCapability(handle)
#From: https://stackoverflow.com/a/4104188/2749989
def run_once(f):

View File

@ -15,8 +15,8 @@ from vllm.distributed import (ensure_model_parallel_initialized,
from vllm.lora.request import LoRARequest
from vllm.model_executor import set_random_seed
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig
from vllm.platforms import current_platform
from vllm.sequence import ExecuteModelRequest
from vllm.utils import get_device_capability_stateless
from vllm.worker.cache_engine import CacheEngine
from vllm.worker.embedding_model_runner import EmbeddingModelRunner
from vllm.worker.model_runner import GPUModelRunnerBase, ModelRunner
@ -333,7 +333,7 @@ def init_worker_distributed_environment(
def _check_if_gpu_supports_dtype(torch_dtype: torch.dtype):
# Check if the GPU supports the dtype.
if torch_dtype == torch.bfloat16:
compute_capability = get_device_capability_stateless()
compute_capability = current_platform.get_device_capability()
if compute_capability[0] < 8:
gpu_name = torch.cuda.get_device_name()
raise ValueError(