mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 21:45:44 +08:00
Add test case for compiling multiple graphs (#21044)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
This commit is contained in:
parent
8560a5b258
commit
4ac7713e32
350
tests/compile/piecewise/test_multiple_graphs.py
Normal file
350
tests/compile/piecewise/test_multiple_graphs.py
Normal file
@ -0,0 +1,350 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Test (piecewise) compilation with a simple model where multiple submodules
|
||||
are compiled and graph captured separately.
|
||||
"""
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.library import Library
|
||||
|
||||
from vllm.compilation.backends import set_model_tag
|
||||
from vllm.compilation.counter import compilation_counter
|
||||
from vllm.compilation.decorators import (ignore_torch_compile,
|
||||
support_torch_compile)
|
||||
from vllm.config import (CompilationConfig, CompilationLevel, VllmConfig,
|
||||
set_current_vllm_config)
|
||||
from vllm.envs import VLLM_USE_V1
|
||||
from vllm.forward_context import set_forward_context
|
||||
from vllm.utils import direct_register_custom_op
|
||||
|
||||
# create a library to hold the custom op
|
||||
silly_lib = Library("silly", "FRAGMENT") # noqa
|
||||
|
||||
BATCH_SIZE = 32
|
||||
MLP_SIZE = 128
|
||||
HIDDEN_SIZE = 1024
|
||||
RANDOM_SEED = 0
|
||||
|
||||
|
||||
def silly_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
||||
out: torch.Tensor) -> None:
|
||||
out.copy_(q)
|
||||
out += k
|
||||
out += v
|
||||
|
||||
|
||||
def silly_attention_fake(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
||||
out: torch.Tensor) -> None:
|
||||
return
|
||||
|
||||
|
||||
direct_register_custom_op(
|
||||
op_name="attention",
|
||||
op_func=silly_attention,
|
||||
mutates_args=["out"],
|
||||
fake_impl=silly_attention_fake,
|
||||
target_lib=silly_lib,
|
||||
)
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class ParentModel(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
*,
|
||||
vllm_config: VllmConfig,
|
||||
prefix: str = '',
|
||||
**kwargs) -> None:
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
|
||||
def __init__(self, mlp_size: int, hidden_size: int) -> None:
|
||||
super().__init__()
|
||||
self.pre_attn = nn.Linear(mlp_size, hidden_size, bias=False)
|
||||
self.post_attn = nn.Linear(hidden_size, mlp_size, bias=False)
|
||||
self.rms_norm_weight = nn.Parameter(torch.ones(hidden_size))
|
||||
|
||||
# Initialize to same weights for testing
|
||||
nn.init.xavier_normal_(
|
||||
self.pre_attn.weight.data,
|
||||
generator=torch.Generator().manual_seed(RANDOM_SEED),
|
||||
gain=0.001)
|
||||
nn.init.xavier_normal_(
|
||||
self.post_attn.weight.data,
|
||||
generator=torch.Generator().manual_seed(RANDOM_SEED),
|
||||
gain=0.001)
|
||||
|
||||
def rms_norm_ref(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x_f32 = x.float()
|
||||
return (x_f32 * torch.rsqrt(
|
||||
torch.mean(x_f32.square(), dim=-1, keepdim=True) + 1e-6) *
|
||||
self.rms_norm_weight).to(x.dtype)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.pre_attn(x)
|
||||
x = self.rms_norm_ref(x)
|
||||
attn_output = torch.empty_like(x)
|
||||
torch.ops.silly.attention(x, x, x, attn_output)
|
||||
x = attn_output
|
||||
x = self.rms_norm_ref(x)
|
||||
x = self.post_attn(x)
|
||||
return x
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class CompiledAttention(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
*,
|
||||
mlp_size: int,
|
||||
hidden_size: int,
|
||||
vllm_config: VllmConfig,
|
||||
prefix: str = '',
|
||||
**kwargs) -> None:
|
||||
super().__init__()
|
||||
self.attn = Attention(mlp_size, hidden_size)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.attn(x)
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class CompiledAttentionTwo(CompiledAttention):
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.attn(x) + x
|
||||
|
||||
|
||||
@ignore_torch_compile
|
||||
class SimpleModelWithTwoGraphs(ParentModel):
|
||||
|
||||
def __init__(self,
|
||||
*,
|
||||
mlp_size: int,
|
||||
hidden_size: int,
|
||||
vllm_config: VllmConfig,
|
||||
prefix: str = '',
|
||||
**kwargs) -> None:
|
||||
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
||||
# Test will fail without set_model_tag here with error:
|
||||
# "ValueError: too many values to unpack (expected 3)"
|
||||
# This is because CompiledAttention and CompiledAttentionTwo
|
||||
# have different implmentations but the same torch.compile
|
||||
# cache dir will be used as default prefix is 'model_tag'
|
||||
with set_model_tag("attn_one"):
|
||||
self.attn_one = CompiledAttention(
|
||||
mlp_size=mlp_size,
|
||||
hidden_size=hidden_size,
|
||||
vllm_config=vllm_config,
|
||||
prefix=f"{prefix}.attn_one",
|
||||
)
|
||||
with set_model_tag("attn_two"):
|
||||
self.attn_two = CompiledAttentionTwo(
|
||||
mlp_size=mlp_size,
|
||||
hidden_size=hidden_size,
|
||||
vllm_config=vllm_config,
|
||||
prefix=f"{prefix}.attn_two",
|
||||
)
|
||||
|
||||
self.hidden_states = torch.zeros((BATCH_SIZE, MLP_SIZE)).cuda()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
bsz = x.shape[0]
|
||||
# CUDAGraph expects same tensor addresses for each run
|
||||
self.hidden_states[:bsz].copy_(x)
|
||||
x = self.attn_one(self.hidden_states[:bsz])
|
||||
self.hidden_states[:bsz].copy_(x)
|
||||
x = self.attn_two(self.hidden_states[:bsz])
|
||||
return x
|
||||
|
||||
|
||||
def test_ignore_torch_compile_decorator():
|
||||
assert VLLM_USE_V1
|
||||
|
||||
# piecewise
|
||||
vllm_config = VllmConfig(compilation_config=CompilationConfig(
|
||||
level=CompilationLevel.PIECEWISE,
|
||||
use_cudagraph=True,
|
||||
splitting_ops=["silly.attention"],
|
||||
cudagraph_capture_sizes=[1, 2],
|
||||
))
|
||||
|
||||
@support_torch_compile
|
||||
class A(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
*,
|
||||
vllm_config: VllmConfig,
|
||||
prefix: str = '',
|
||||
**kwargs) -> None:
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = x + x
|
||||
attn_output = torch.empty_like(x)
|
||||
torch.ops.silly.attention(x, x, x, attn_output)
|
||||
x = attn_output
|
||||
x = x * 3
|
||||
return x
|
||||
|
||||
@ignore_torch_compile
|
||||
class B(A):
|
||||
...
|
||||
|
||||
@support_torch_compile
|
||||
class C(B):
|
||||
...
|
||||
|
||||
with set_current_vllm_config(vllm_config):
|
||||
mod_A = A(vllm_config=vllm_config, prefix='').eval().cuda()
|
||||
|
||||
# A has support_torch_compile
|
||||
with compilation_counter.expect(
|
||||
num_graphs_seen=1,
|
||||
num_piecewise_graphs_seen=3,
|
||||
num_piecewise_capturable_graphs_seen=2,
|
||||
num_backend_compilations=2,
|
||||
num_cudagraph_captured=4,
|
||||
# num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
|
||||
), set_forward_context({}, vllm_config=vllm_config):
|
||||
# first run is for compile
|
||||
mod_A(torch.randn(BATCH_SIZE, MLP_SIZE).cuda())
|
||||
# run cudagraph captured sizes
|
||||
mod_A(torch.randn(2, MLP_SIZE).cuda())
|
||||
mod_A(torch.randn(1, MLP_SIZE).cuda())
|
||||
|
||||
with set_current_vllm_config(vllm_config):
|
||||
mod_B = B(vllm_config=vllm_config, prefix='').eval().cuda()
|
||||
|
||||
# B's ignore_torch_compile should override A's support_torch_compile
|
||||
with compilation_counter.expect(
|
||||
num_graphs_seen=0,
|
||||
num_piecewise_graphs_seen=0,
|
||||
num_piecewise_capturable_graphs_seen=0,
|
||||
num_backend_compilations=0,
|
||||
num_cudagraph_captured=0,
|
||||
), set_forward_context({}, vllm_config=vllm_config):
|
||||
mod_B(torch.randn(BATCH_SIZE, MLP_SIZE).cuda())
|
||||
mod_B(torch.randn(2, MLP_SIZE).cuda())
|
||||
mod_B(torch.randn(1, MLP_SIZE).cuda())
|
||||
|
||||
with set_current_vllm_config(vllm_config):
|
||||
mod_C = C(vllm_config=vllm_config, prefix='').eval().cuda()
|
||||
|
||||
# C's support_torch_compile should override B's ignore_torch_compile
|
||||
with compilation_counter.expect(
|
||||
num_graphs_seen=1,
|
||||
num_piecewise_graphs_seen=3,
|
||||
num_piecewise_capturable_graphs_seen=2,
|
||||
num_backend_compilations=2,
|
||||
num_cudagraph_captured=4,
|
||||
# num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
|
||||
), set_forward_context({}, vllm_config=vllm_config):
|
||||
mod_C(torch.randn(BATCH_SIZE, MLP_SIZE).cuda())
|
||||
mod_C(torch.randn(2, MLP_SIZE).cuda())
|
||||
mod_C(torch.randn(1, MLP_SIZE).cuda())
|
||||
|
||||
|
||||
@torch.inference_mode
|
||||
def run_model(vllm_config, model: nn.Module, inputs: torch.Tensor):
|
||||
with set_forward_context({}, vllm_config=vllm_config):
|
||||
# First run is for compile
|
||||
model(inputs)
|
||||
|
||||
# Run CUDAGraph captured sizes
|
||||
model(inputs[:2])
|
||||
model(inputs[:1])
|
||||
|
||||
output = model(inputs[:2])
|
||||
|
||||
output = output.cpu()
|
||||
return output.cpu()
|
||||
|
||||
|
||||
def test_multi_graph_piecewise_compile_outputs_equal():
|
||||
outputs = []
|
||||
|
||||
# piecewise compile
|
||||
vllm_config = VllmConfig(compilation_config=CompilationConfig(
|
||||
level=CompilationLevel.PIECEWISE,
|
||||
use_cudagraph=True,
|
||||
splitting_ops=["silly.attention"],
|
||||
cudagraph_capture_sizes=[1, 2],
|
||||
))
|
||||
|
||||
with set_current_vllm_config(vllm_config):
|
||||
model = SimpleModelWithTwoGraphs(mlp_size=MLP_SIZE,
|
||||
hidden_size=HIDDEN_SIZE,
|
||||
vllm_config=vllm_config,
|
||||
prefix='').eval().cuda()
|
||||
|
||||
# Pre-allocate memory for CUDAGraph which expects
|
||||
# static tensor addresses
|
||||
inputs = torch.randn(BATCH_SIZE, MLP_SIZE).cuda()
|
||||
|
||||
with compilation_counter.expect(
|
||||
num_graphs_seen=2, # two graphs for the model
|
||||
num_piecewise_graphs_seen=6,
|
||||
# attn_one, attn_two each has 3 piecewise graphs
|
||||
# (pre attn, post attn, silly_attention) each
|
||||
num_piecewise_capturable_graphs_seen=4,
|
||||
# attn_one, attn_two has pre attn and post attn each, total=4
|
||||
num_backend_compilations=4, # num_piecewise_capturable_graphs_seen
|
||||
num_cudagraph_captured=8,
|
||||
# num_cudagraph_sizes * num_piecewise_capturable_graphs_seen
|
||||
):
|
||||
outputs.append(run_model(vllm_config, model, inputs))
|
||||
|
||||
# no compile or cudagraph
|
||||
vllm_config = VllmConfig(compilation_config=CompilationConfig(
|
||||
level=CompilationLevel.NO_COMPILATION, ))
|
||||
|
||||
with set_current_vllm_config(vllm_config):
|
||||
model = SimpleModelWithTwoGraphs(mlp_size=MLP_SIZE,
|
||||
hidden_size=HIDDEN_SIZE,
|
||||
vllm_config=vllm_config,
|
||||
prefix='').eval().cuda()
|
||||
|
||||
with compilation_counter.expect(
|
||||
num_graphs_seen=0,
|
||||
num_piecewise_graphs_seen=0,
|
||||
num_piecewise_capturable_graphs_seen=0,
|
||||
num_backend_compilations=0,
|
||||
num_cudagraph_captured=0,
|
||||
):
|
||||
outputs.append(run_model(vllm_config, model, inputs))
|
||||
|
||||
# piecewise compile without CUDA graph
|
||||
vllm_config = VllmConfig(compilation_config=CompilationConfig(
|
||||
level=CompilationLevel.PIECEWISE,
|
||||
use_cudagraph=False,
|
||||
splitting_ops=["silly.attention"],
|
||||
))
|
||||
|
||||
with set_current_vllm_config(vllm_config):
|
||||
model = SimpleModelWithTwoGraphs(mlp_size=MLP_SIZE,
|
||||
hidden_size=HIDDEN_SIZE,
|
||||
vllm_config=vllm_config,
|
||||
prefix='').eval().cuda()
|
||||
|
||||
with compilation_counter.expect(
|
||||
num_graphs_seen=2,
|
||||
num_piecewise_graphs_seen=6,
|
||||
num_piecewise_capturable_graphs_seen=4,
|
||||
num_backend_compilations=4,
|
||||
num_cudagraph_captured=0, # no cudagraph captured
|
||||
):
|
||||
outputs.append(run_model(vllm_config, model, inputs))
|
||||
|
||||
# Generally don't expect outputs with and without inductor
|
||||
# to be bitwise equivalent
|
||||
assert torch.allclose(outputs[0], outputs[1])
|
||||
|
||||
# Expect bitwise equivalence using inductor w/ and w/o cudagraph
|
||||
assert torch.equal(outputs[0], outputs[2])
|
||||
@ -423,6 +423,12 @@ class InductorAdaptor(CompilerInterface):
|
||||
if is_torch_equal_or_newer("2.6"):
|
||||
stack.enter_context(
|
||||
torch._inductor.config.patch(fx_graph_remote_cache=False))
|
||||
# InductorAdaptor (unfortunately) requires AOTAutogradCache
|
||||
# to be turned off to run. It will fail to acquire the hash_str
|
||||
# and error if not.
|
||||
# StandaloneInductorAdaptor (PyTorch 2.8+) fixes this problem.
|
||||
stack.enter_context(
|
||||
torch._functorch.config.patch(enable_autograd_cache=False))
|
||||
stack.enter_context(
|
||||
torch._functorch.config.patch(
|
||||
enable_remote_autograd_cache=False))
|
||||
|
||||
@ -20,9 +20,38 @@ from .monitor import start_monitoring_torch_compile
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
IGNORE_COMPILE_KEY = "_ignore_compile_vllm"
|
||||
|
||||
_T = TypeVar("_T", bound=type[nn.Module])
|
||||
|
||||
|
||||
def ignore_torch_compile(cls: _T) -> _T:
|
||||
"""
|
||||
A decorator to ignore support_torch_compile decorator
|
||||
on the class. This is useful when a parent class has
|
||||
a support_torch_compile decorator, but we don't want to
|
||||
compile the class `cls` that inherits the parent class.
|
||||
This only ignores compiling the forward of the class the
|
||||
decorator is applied to.
|
||||
|
||||
If the parent has ignore_torch_compile but the child has
|
||||
support_torch_compile, the child will still be compiled.
|
||||
|
||||
If the class has one or more submodules
|
||||
that have support_torch_compile decorator applied, compile will
|
||||
not be ignored for those submodules.
|
||||
"""
|
||||
setattr(cls, IGNORE_COMPILE_KEY, True)
|
||||
return cls
|
||||
|
||||
|
||||
def _should_ignore_torch_compile(cls) -> bool:
|
||||
"""
|
||||
Check if the class should be ignored for torch.compile.
|
||||
"""
|
||||
return getattr(cls, IGNORE_COMPILE_KEY, False)
|
||||
|
||||
|
||||
@overload
|
||||
def support_torch_compile(
|
||||
*,
|
||||
@ -148,6 +177,8 @@ def _support_torch_compile(
|
||||
|
||||
old_init = cls.__init__
|
||||
|
||||
setattr(cls, IGNORE_COMPILE_KEY, False)
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = '', **kwargs):
|
||||
old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs)
|
||||
self.vllm_config = vllm_config
|
||||
@ -156,9 +187,11 @@ def _support_torch_compile(
|
||||
self.do_not_compile = \
|
||||
vllm_config.compilation_config.level in [
|
||||
CompilationLevel.NO_COMPILATION, CompilationLevel.DYNAMO_AS_IS
|
||||
] or not supports_dynamo()
|
||||
] or not supports_dynamo() or _should_ignore_torch_compile(
|
||||
self.__class__)
|
||||
if self.do_not_compile:
|
||||
return
|
||||
|
||||
compilation_counter.num_models_seen += 1
|
||||
TorchCompileWrapperWithCustomDispatcher.__init__(
|
||||
self, compilation_level=vllm_config.compilation_config.level)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user