mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 04:54:56 +08:00
[V0 Deprecation] Remove V0 Core tests (#25082)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
This commit is contained in:
parent
087c6ffc92
commit
4b946d693e
@ -91,17 +91,6 @@ steps:
|
||||
- pytest -v -s basic_correctness/test_cpu_offload.py
|
||||
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
|
||||
|
||||
- label: Core Test # 22min
|
||||
timeout_in_minutes: 35
|
||||
mirror_hardwares: [amdexperimental]
|
||||
fast_check: true
|
||||
source_file_dependencies:
|
||||
- vllm/core
|
||||
- vllm/distributed
|
||||
- tests/core
|
||||
commands:
|
||||
- pytest -v -s core
|
||||
|
||||
- label: Entrypoints Unit Tests # 5min
|
||||
timeout_in_minutes: 10
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
|
||||
@ -1,15 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def should_do_global_cleanup_after_test() -> bool:
|
||||
"""Disable the global cleanup fixture for tests in this directory. This
|
||||
provides a ~10x speedup for unit tests that don't load a model to GPU.
|
||||
|
||||
This requires that tests in this directory clean up after themselves if they
|
||||
use the GPU.
|
||||
"""
|
||||
return False
|
||||
@ -1,71 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from collections.abc import Iterable
|
||||
from typing import Callable, Optional
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm import LLM
|
||||
from vllm.distributed import cleanup_dist_env_and_memory
|
||||
from vllm.model_executor.utils import set_random_seed
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def baseline_llm_generator(common_llm_kwargs, per_test_common_llm_kwargs,
|
||||
baseline_llm_kwargs, seed):
|
||||
return create_llm_generator(common_llm_kwargs, per_test_common_llm_kwargs,
|
||||
baseline_llm_kwargs, seed)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def test_llm_generator(common_llm_kwargs, per_test_common_llm_kwargs,
|
||||
test_llm_kwargs, seed):
|
||||
return create_llm_generator(common_llm_kwargs, per_test_common_llm_kwargs,
|
||||
test_llm_kwargs, seed)
|
||||
|
||||
|
||||
def create_llm_generator(common_llm_kwargs, per_test_common_llm_kwargs,
|
||||
distinct_llm_kwargs, seed):
|
||||
kwargs = {
|
||||
**common_llm_kwargs,
|
||||
**per_test_common_llm_kwargs,
|
||||
**distinct_llm_kwargs,
|
||||
}
|
||||
|
||||
def generator_inner():
|
||||
llm = LLM(**kwargs)
|
||||
|
||||
set_random_seed(seed)
|
||||
|
||||
yield llm
|
||||
del llm
|
||||
cleanup_dist_env_and_memory()
|
||||
|
||||
for llm in generator_inner():
|
||||
yield llm
|
||||
del llm
|
||||
|
||||
|
||||
def get_text_from_llm_generator(llm_generator: Iterable[LLM],
|
||||
prompts,
|
||||
sampling_params,
|
||||
llm_cb: Optional[Callable[[LLM],
|
||||
None]] = None):
|
||||
for llm in llm_generator:
|
||||
if llm_cb:
|
||||
llm_cb(llm)
|
||||
outputs = llm.generate(prompts, sampling_params, use_tqdm=True)
|
||||
text = [output.outputs[0].text for output in outputs]
|
||||
del llm
|
||||
|
||||
return text
|
||||
|
||||
|
||||
def get_token_ids_from_llm_generator(llm_generator, prompts, sampling_params):
|
||||
for llm in llm_generator:
|
||||
outputs = llm.generate(prompts, sampling_params, use_tqdm=True)
|
||||
token_ids = [output.outputs[0].token_ids for output in outputs]
|
||||
del llm
|
||||
|
||||
return token_ids
|
||||
@ -1,479 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from itertools import cycle
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm import SamplingParams
|
||||
|
||||
from .conftest import get_token_ids_from_llm_generator
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"common_llm_kwargs",
|
||||
[{
|
||||
# Use a small model for a fast test.
|
||||
"model": "facebook/opt-125m",
|
||||
|
||||
# skip cuda graph creation for fast test.
|
||||
"enforce_eager": True,
|
||||
|
||||
# Allow only 5 sequences of ~1024 tokens in worst case.
|
||||
"block_size": 16,
|
||||
"num_gpu_blocks_override": 5 * (64 + 1),
|
||||
}])
|
||||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
|
||||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
|
||||
@pytest.mark.parametrize("test_llm_kwargs", [{
|
||||
"preemption_mode": "swap"
|
||||
}, {
|
||||
"preemption_mode": "recompute"
|
||||
}])
|
||||
@pytest.mark.parametrize("batch_size", [10])
|
||||
@pytest.mark.parametrize("seed", [1])
|
||||
def test_block_manager_with_preemption(baseline_llm_generator,
|
||||
test_llm_generator, batch_size):
|
||||
"""Verify block manager produces same outputs even when there is preemption.
|
||||
|
||||
This constructs two LLM, each with limited number of GPU blocks. The limit
|
||||
is decided such that as the sequences in the batch grow, sequences must be
|
||||
preempted and removed from cache.
|
||||
|
||||
If the output token ids are equivalent, then we have confidence that the KV
|
||||
cache is not corrupted.
|
||||
|
||||
NOTE: We want a significant number of generated tokens so that any incorrect
|
||||
KV mapping has time to build up error.
|
||||
|
||||
NOTE(Kuntai): Though we have removed block manager v1, this test is still
|
||||
useful as it asserts the behavior of block manager v2 (now it is called
|
||||
SelfAttnBlockSpaceManager) is the same when swapping / preemption, so we
|
||||
keep this test.
|
||||
"""
|
||||
output_len = 1024
|
||||
temperature = 0.0
|
||||
|
||||
# We want to ensure equality even with preemption.
|
||||
# We force the total block size to be 1 + cdiv(output_len, block_size)
|
||||
# so that only one sequence can fit at a time (once the sequences grow).
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
|
||||
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
max_tokens=output_len,
|
||||
ignore_eos=True,
|
||||
temperature=temperature,
|
||||
)
|
||||
|
||||
baseline_token_ids = get_token_ids_from_llm_generator(
|
||||
baseline_llm_generator, prompts, sampling_params)
|
||||
|
||||
test_token_ids = get_token_ids_from_llm_generator(test_llm_generator,
|
||||
prompts, sampling_params)
|
||||
|
||||
for expected_token_ids, actual_token_ids in zip(baseline_token_ids,
|
||||
test_token_ids):
|
||||
assert expected_token_ids == actual_token_ids
|
||||
|
||||
assert baseline_token_ids == test_token_ids
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"common_llm_kwargs",
|
||||
[{
|
||||
# Use a small model for a fast test.
|
||||
"model": "facebook/opt-125m",
|
||||
|
||||
# Our prompts will generate 128 tokens; since the prompts themselves are
|
||||
# small, we don't need much KV space beyond 128.
|
||||
"max_model_len": 160,
|
||||
|
||||
# skip cuda graph creation for fast test.
|
||||
"enforce_eager": True,
|
||||
}])
|
||||
@pytest.mark.parametrize(
|
||||
"per_test_common_llm_kwargs",
|
||||
[
|
||||
{
|
||||
"block_size": 16,
|
||||
|
||||
# Allow only 2 sequences of ~128 tokens in worst case.
|
||||
# Note 8 = 128/block_size
|
||||
"num_gpu_blocks_override": 2 * (8 + 1),
|
||||
},
|
||||
{
|
||||
"block_size": 8,
|
||||
|
||||
# Allow only 2 sequences of ~128 tokens in worst case.
|
||||
# Note 16 = 128/block_size
|
||||
"num_gpu_blocks_override": 2 * (16 + 2),
|
||||
}
|
||||
])
|
||||
@pytest.mark.parametrize("baseline_llm_kwargs", [{
|
||||
"num_lookahead_slots": 0,
|
||||
}])
|
||||
@pytest.mark.parametrize(
|
||||
"test_llm_kwargs",
|
||||
[
|
||||
{
|
||||
# We run one test with block_size < lookahead_slots, one test with
|
||||
# block_size > lookahead_slots
|
||||
"num_lookahead_slots": 10,
|
||||
"preemption_mode": "swap",
|
||||
},
|
||||
{
|
||||
"num_lookahead_slots": 10,
|
||||
"preemption_mode": "recompute",
|
||||
}
|
||||
])
|
||||
@pytest.mark.parametrize("batch_size", [4])
|
||||
@pytest.mark.parametrize("seed", [1])
|
||||
def test_lookahead_greedy_equality_with_preemption(baseline_llm_generator,
|
||||
test_llm_generator,
|
||||
batch_size):
|
||||
"""Verify vLLM produces the same output with greedy sampling, when lookahead
|
||||
scheduling is used vs. not.
|
||||
|
||||
Lookahead scheduling is not expected to modify the output, as it simply
|
||||
allocates empty slots ahead of the known token ids in a sliding fashion.
|
||||
|
||||
This test constrains the total number of blocks to force preemption. It also
|
||||
varies the block size so that the lookahead size is less than and greater
|
||||
than the block size.
|
||||
"""
|
||||
output_len = 128
|
||||
temperature = 0.0
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
|
||||
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
max_tokens=output_len,
|
||||
ignore_eos=True,
|
||||
temperature=temperature,
|
||||
)
|
||||
|
||||
print('Getting token ids without lookahead scheduling')
|
||||
baseline_token_ids = get_token_ids_from_llm_generator(
|
||||
baseline_llm_generator, prompts, sampling_params)
|
||||
|
||||
print('Getting token ids with lookahead scheduling')
|
||||
test_token_ids = get_token_ids_from_llm_generator(test_llm_generator,
|
||||
prompts, sampling_params)
|
||||
|
||||
for expected_token_ids, actual_token_ids in zip(baseline_token_ids,
|
||||
test_token_ids):
|
||||
assert expected_token_ids == actual_token_ids
|
||||
|
||||
assert baseline_token_ids == test_token_ids
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"common_llm_kwargs",
|
||||
[
|
||||
{
|
||||
# Use a small model for a fast test.
|
||||
"model": "facebook/opt-125m",
|
||||
|
||||
# skip cuda graph creation for fast test.
|
||||
"enforce_eager": True,
|
||||
"enable_chunked_prefill": True,
|
||||
},
|
||||
])
|
||||
@pytest.mark.parametrize("per_test_common_llm_kwargs",
|
||||
[{
|
||||
"block_size": 16,
|
||||
"max_num_batched_tokens": 2,
|
||||
"max_num_seqs": 2,
|
||||
}, {
|
||||
"block_size": 16,
|
||||
"max_num_batched_tokens": 3,
|
||||
"max_num_seqs": 2,
|
||||
}, {
|
||||
"block_size": 16,
|
||||
"max_num_batched_tokens": 256,
|
||||
"max_num_seqs": 10,
|
||||
}])
|
||||
@pytest.mark.parametrize("baseline_llm_kwargs", [
|
||||
{},
|
||||
])
|
||||
@pytest.mark.parametrize("test_llm_kwargs", [
|
||||
{
|
||||
"num_lookahead_slots": 0,
|
||||
},
|
||||
{
|
||||
"num_lookahead_slots": 5,
|
||||
},
|
||||
])
|
||||
@pytest.mark.parametrize("batch_size", [4])
|
||||
@pytest.mark.parametrize("seed", [1])
|
||||
def test_chunked_prefill_block_manager(baseline_llm_generator,
|
||||
test_llm_generator, batch_size):
|
||||
"""Verify that chunked prefill works with SelfAttnBlockSpaceManager,
|
||||
with and without lookahead scheduling.
|
||||
"""
|
||||
output_len = 32
|
||||
temperature = 0.0
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
("1 + " * 50) + " 1 = ", # Longer prompt.
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
|
||||
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
max_tokens=output_len,
|
||||
ignore_eos=True,
|
||||
temperature=temperature,
|
||||
)
|
||||
|
||||
print('Getting token ids with BlockManager')
|
||||
baseline_token_ids = get_token_ids_from_llm_generator(
|
||||
baseline_llm_generator, prompts, sampling_params)
|
||||
|
||||
print('Getting token ids with BlockManager, with lookahead slots.')
|
||||
test_token_ids = get_token_ids_from_llm_generator(test_llm_generator,
|
||||
prompts, sampling_params)
|
||||
|
||||
for expected_token_ids, actual_token_ids in zip(baseline_token_ids,
|
||||
test_token_ids):
|
||||
assert expected_token_ids == actual_token_ids
|
||||
|
||||
assert baseline_token_ids == test_token_ids
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"common_llm_kwargs",
|
||||
[{
|
||||
# Use a small model for a fast test.
|
||||
"model": "facebook/opt-125m",
|
||||
|
||||
# skip cuda graph creation for fast test.
|
||||
"enforce_eager": True,
|
||||
|
||||
# Allow only 5 sequences of ~1024 tokens in worst case.
|
||||
"block_size": 16,
|
||||
"num_gpu_blocks_override": 5 * (64 + 1),
|
||||
|
||||
# Enable prefill cache
|
||||
"enable_prefix_caching": True,
|
||||
}])
|
||||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
|
||||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
|
||||
@pytest.mark.parametrize("test_llm_kwargs", [{
|
||||
"preemption_mode": "swap"
|
||||
}, {
|
||||
"preemption_mode": "recompute"
|
||||
}])
|
||||
@pytest.mark.parametrize("batch_size", [10])
|
||||
@pytest.mark.parametrize("seed", [1])
|
||||
def test_block_manager_prefix_caching_enabled_with_preemption(
|
||||
baseline_llm_generator, test_llm_generator, batch_size):
|
||||
"""Verify block manager produces same outputs even when there is preemption.
|
||||
|
||||
This constructs two LLM, each with limited number of GPU blocks. The limit
|
||||
is decided such that as the sequences in the batch grow, sequences must be
|
||||
preempted and removed from cache.
|
||||
|
||||
If the output token ids are equivalent, then we have confidence that the KV
|
||||
cache is not corrupted.
|
||||
|
||||
NOTE: We want a significant number of generated tokens so that any incorrect
|
||||
KV mapping has time to build up error.
|
||||
|
||||
NOTE(Kuntai): Though we have removed block manager v1, this test is still
|
||||
useful as it asserts the behavior of block manager v2 (now it is called
|
||||
SelfAttnBlockSpaceManager) is the same when swapping / preemption, so we
|
||||
keep this test.
|
||||
"""
|
||||
output_len = 1024
|
||||
temperature = 0.0
|
||||
|
||||
# We want to ensure equality even with preemption.
|
||||
# We force the total block size to be 1 + cdiv(output_len, block_size)
|
||||
# so that only one sequence can fit at a time (once the sequences grow).
|
||||
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
|
||||
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
max_tokens=output_len,
|
||||
ignore_eos=True,
|
||||
temperature=temperature,
|
||||
)
|
||||
|
||||
print('Getting token ids from block manager')
|
||||
baseline_token_ids = get_token_ids_from_llm_generator(
|
||||
baseline_llm_generator, prompts, sampling_params)
|
||||
|
||||
print('Getting token ids from block manager, with preemption')
|
||||
test_token_ids = get_token_ids_from_llm_generator(test_llm_generator,
|
||||
prompts, sampling_params)
|
||||
|
||||
for expected_token_ids, actual_token_ids in zip(baseline_token_ids,
|
||||
test_token_ids):
|
||||
assert expected_token_ids == actual_token_ids
|
||||
|
||||
assert baseline_token_ids == test_token_ids
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"common_llm_kwargs",
|
||||
[{
|
||||
# Use a small model for a fast test.
|
||||
"model": "facebook/opt-125m",
|
||||
|
||||
# skip cuda graph creation for fast test.
|
||||
"enforce_eager": True,
|
||||
|
||||
# Allow only 5 sequences of ~1024 tokens in worst case.
|
||||
"block_size": 16,
|
||||
"num_gpu_blocks_override": 5 * (64 + 1),
|
||||
}])
|
||||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
|
||||
@pytest.mark.parametrize("baseline_llm_kwargs", [{
|
||||
"enable_prefix_caching": False
|
||||
}])
|
||||
@pytest.mark.parametrize("test_llm_kwargs", [{
|
||||
"enable_prefix_caching": True,
|
||||
"preemption_mode": "swap"
|
||||
}, {
|
||||
"enable_prefix_caching": True,
|
||||
"preemption_mode": "recompute"
|
||||
}])
|
||||
@pytest.mark.parametrize("batch_size", [10])
|
||||
@pytest.mark.parametrize("seed", [1])
|
||||
def test_auto_prefix_caching_with_preemption(baseline_llm_generator,
|
||||
test_llm_generator, batch_size):
|
||||
"""Verify block manager v2 with auto prefix caching enabled produces same
|
||||
outputs as auto prefix caching disabled, even when there is preemption.
|
||||
|
||||
This constructs two LLM, each with limited number of GPU blocks. The limit
|
||||
is decided such that as the sequences in the batch grow, sequences must be
|
||||
preempted and removed from cache.
|
||||
|
||||
If the output token ids are equivalent, then we have confidence that auto
|
||||
prefix caching itself at least don't cause result error.
|
||||
"""
|
||||
output_len = 1024
|
||||
temperature = 0.0
|
||||
|
||||
# We want to ensure equality even with preemption.
|
||||
# We force the total block size to be 1 + cdiv(output_len, block_size)
|
||||
# so that only one sequence can fit at a time (once the sequences grow).
|
||||
prompts = [
|
||||
"Hello, my name is",
|
||||
"The president of the United States is",
|
||||
"The capital of France is",
|
||||
"The future of AI is",
|
||||
]
|
||||
|
||||
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
max_tokens=output_len,
|
||||
ignore_eos=True,
|
||||
temperature=temperature,
|
||||
)
|
||||
|
||||
print('Getting token ids with APC disabled')
|
||||
baseline_token_ids = get_token_ids_from_llm_generator(
|
||||
baseline_llm_generator, prompts, sampling_params)
|
||||
|
||||
print('Getting token ids with APC enabled')
|
||||
test_token_ids = get_token_ids_from_llm_generator(test_llm_generator,
|
||||
prompts, sampling_params)
|
||||
|
||||
for expected_token_ids, actual_token_ids in zip(baseline_token_ids,
|
||||
test_token_ids):
|
||||
assert expected_token_ids == actual_token_ids
|
||||
|
||||
assert baseline_token_ids == test_token_ids
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"common_llm_kwargs",
|
||||
[{
|
||||
# Use a small model for a fast test.
|
||||
"model": "facebook/opt-125m",
|
||||
|
||||
# skip cuda graph creation for fast test.
|
||||
"enforce_eager": True,
|
||||
|
||||
# we keep the blocks small, so that hit eviction quickly
|
||||
"max_model_len": 48,
|
||||
"block_size": 16,
|
||||
"num_gpu_blocks_override": 3,
|
||||
}])
|
||||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
|
||||
@pytest.mark.parametrize("baseline_llm_kwargs", [{
|
||||
"enable_prefix_caching": False
|
||||
}])
|
||||
@pytest.mark.parametrize("test_llm_kwargs", [{
|
||||
"enable_prefix_caching": True,
|
||||
}])
|
||||
@pytest.mark.parametrize("seed", [1])
|
||||
def test_auto_prefix_caching_after_eviction_start(baseline_llm_generator,
|
||||
test_llm_generator):
|
||||
"""Verify block manager v2 with auto prefix caching could work normally
|
||||
even when eviction started.
|
||||
With APC enabled, all blocks are held by native block at the beginning.
|
||||
Then blocks are managed by evictor instead. If cache hit at the evictor's
|
||||
block, then it could be reused, or we need to recompute its kv cache.
|
||||
"""
|
||||
output_len = 10
|
||||
temperature = 0.0
|
||||
|
||||
prompts = [
|
||||
"You are a helpful assistant. Please answer truthfully and write "
|
||||
"out your thinking step by step to be sure you get the right answer. "
|
||||
"If you make a mistake, attempt to correct it. who are you?",
|
||||
"You are a helpful assistant. Please answer truthfully and write out "
|
||||
"your thinking step by step to be sure you get the right answer. You "
|
||||
"are helpful and harmless and you follow ethical guidelines. "
|
||||
"who are you?"
|
||||
]
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
max_tokens=output_len,
|
||||
ignore_eos=True,
|
||||
temperature=temperature,
|
||||
)
|
||||
|
||||
print('Getting token ids with APC disabled')
|
||||
baseline_token_ids = get_token_ids_from_llm_generator(
|
||||
baseline_llm_generator, prompts, sampling_params)
|
||||
|
||||
print('Getting token ids with APC enabled')
|
||||
test_token_ids = get_token_ids_from_llm_generator(test_llm_generator,
|
||||
prompts, sampling_params)
|
||||
|
||||
for expected_token_ids, actual_token_ids in zip(baseline_token_ids,
|
||||
test_token_ids):
|
||||
assert expected_token_ids == actual_token_ids
|
||||
|
||||
assert baseline_token_ids == test_token_ids
|
||||
@ -1,185 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import random
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.kernels.utils import override_backend_env_variable
|
||||
from vllm import LLM, SamplingParams
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
from .conftest import get_text_from_llm_generator
|
||||
|
||||
# relatively small model with 4k sliding window
|
||||
MODEL = "bigcode/starcoder2-3b"
|
||||
BLOCK_SIZE = 16
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"common_llm_kwargs",
|
||||
[{
|
||||
"model": MODEL,
|
||||
|
||||
# skip cuda graph creation for fast test.
|
||||
"enforce_eager": True,
|
||||
"block_size": BLOCK_SIZE,
|
||||
# needed due to https://github.com/vllm-project/vllm/issues/1908#issuecomment-2101122008
|
||||
"num_gpu_blocks_override": 100000 // BLOCK_SIZE,
|
||||
}])
|
||||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
|
||||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
|
||||
@pytest.mark.parametrize("test_llm_kwargs", [{}])
|
||||
@pytest.mark.parametrize("batch_size", [5])
|
||||
@pytest.mark.parametrize("seed", [1])
|
||||
@pytest.mark.parametrize("backend", ["FLASH_ATTN", "XFORMERS"])
|
||||
def test_sliding_window_retrieval(baseline_llm_generator, test_llm_generator,
|
||||
batch_size, seed, backend, monkeypatch):
|
||||
"""
|
||||
The test does a bunch of assignments "x1 = 10\nx2 = 33\n..." and then
|
||||
asks for value of one of them (which is outside the sliding window).
|
||||
If we tell it upfront which we are going to be looking for, then
|
||||
it answers correctly (mostly).
|
||||
|
||||
Additionally, we compare the results of the v1 and v2 managers.
|
||||
"""
|
||||
if backend == "XFORMERS" and current_platform.is_rocm():
|
||||
pytest.skip("Xformers does not support ROCm/HIP.")
|
||||
|
||||
override_backend_env_variable(monkeypatch, backend)
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
max_tokens=1024,
|
||||
ignore_eos=True,
|
||||
temperature=0.0,
|
||||
)
|
||||
|
||||
prompts, answer, indices = prep_prompts(batch_size)
|
||||
|
||||
baseline_texts = get_text_from_llm_generator(baseline_llm_generator,
|
||||
prompts,
|
||||
sampling_params,
|
||||
llm_cb=check_window(prompts))
|
||||
|
||||
check_answers(indices, answer, baseline_texts)
|
||||
|
||||
print('Getting token ids from block manager v2')
|
||||
test_texts = get_text_from_llm_generator(test_llm_generator, prompts,
|
||||
sampling_params)
|
||||
check_answers(indices, answer, test_texts)
|
||||
|
||||
cmp = [
|
||||
expected_text == actual_text
|
||||
for expected_text, actual_text in zip(baseline_texts, test_texts)
|
||||
]
|
||||
print(cmp)
|
||||
# make sure it's mostly OK; this is possibly because https://github.com/vllm-project/vllm/pull/4768
|
||||
# however, https://github.com/vllm-project/vllm/issues/3385#issuecomment-1995924290
|
||||
# states that xformers and flash_attn have different ideas about the window
|
||||
# size anyways
|
||||
assert sum(cmp) > 0.7 * len(cmp)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"common_llm_kwargs",
|
||||
[{
|
||||
"model": MODEL,
|
||||
|
||||
# skip cuda graph creation for fast test.
|
||||
"enforce_eager": True,
|
||||
"block_size": BLOCK_SIZE,
|
||||
"num_gpu_blocks_override": 100000 // BLOCK_SIZE,
|
||||
}])
|
||||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
|
||||
@pytest.mark.parametrize("test_llm_kwargs", [{"enable_chunked_prefill": True}])
|
||||
@pytest.mark.parametrize("batch_size", [5])
|
||||
@pytest.mark.parametrize("seed", [1])
|
||||
@pytest.mark.parametrize("backend", ["FLASH_ATTN", "XFORMERS"])
|
||||
def test_sliding_window_chunked_prefill(test_llm_generator, batch_size, seed,
|
||||
backend, monkeypatch):
|
||||
"""
|
||||
This is similar to test_sliding_window_retrieval, however, it doesn't
|
||||
compare against the v1 block manager since v1 doesn't support
|
||||
chunked prefill with sliding window.
|
||||
|
||||
The results with and without chunked prefill are not the same due to
|
||||
numerical instabilities.
|
||||
"""
|
||||
if backend == "XFORMERS" and current_platform.is_rocm():
|
||||
pytest.skip("Xformers does not support ROCm/HIP.")
|
||||
override_backend_env_variable(monkeypatch, backend)
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
max_tokens=10,
|
||||
ignore_eos=True,
|
||||
temperature=0.0,
|
||||
)
|
||||
|
||||
prompts, answer, indices = prep_prompts(batch_size)
|
||||
|
||||
# We don't compare with the baseline model here, since the results
|
||||
# slightly different due to different tailing in attention.
|
||||
test_texts = get_text_from_llm_generator(test_llm_generator,
|
||||
prompts,
|
||||
sampling_params,
|
||||
llm_cb=check_window(prompts))
|
||||
check_answers(indices, answer, test_texts)
|
||||
|
||||
|
||||
def prep_prompts(batch_size: int, ln_range: tuple[int, int] = (800, 1100)):
|
||||
"""
|
||||
Generate prompts which a bunch of assignments,
|
||||
then asking for the value of one of them.
|
||||
The prompt is just under 10k tokens; sliding window is 4k
|
||||
so the answer is outside sliding window, but should still be correct.
|
||||
|
||||
Args:
|
||||
batch_size: number of prompts to generate
|
||||
ln_range: an argument to control the length of the prompt
|
||||
"""
|
||||
prompts: list[str] = []
|
||||
answer: list[int] = []
|
||||
indices: list[int] = []
|
||||
random.seed(1)
|
||||
for _ in range(batch_size):
|
||||
idx = random.randint(30, 90)
|
||||
indices.append(idx)
|
||||
prompt = "```python\n# We set a number of variables, " + \
|
||||
f"x{idx} will be important later\n"
|
||||
ln = random.randint(*ln_range)
|
||||
for k in range(30, ln):
|
||||
v = random.randint(10, 99)
|
||||
if k == idx:
|
||||
answer.append(v)
|
||||
prompt += f"x{k} = {v}\n"
|
||||
prompt += f"# Now, we check the value of x{idx}:\n"
|
||||
prompt += f"assert x{idx} == "
|
||||
prompts.append(prompt)
|
||||
return prompts, answer, indices
|
||||
|
||||
|
||||
def check_answers(indices: list[int],
|
||||
answer: list[int],
|
||||
outputs: list[str],
|
||||
accept_rate: float = 0.7):
|
||||
answer2 = [int(text[0:2].strip()) for text in outputs]
|
||||
print(list(zip(indices, zip(answer, answer2))))
|
||||
numok = 0
|
||||
for a1, a2 in zip(answer, answer2):
|
||||
if a1 == a2:
|
||||
numok += 1
|
||||
frac_ok = numok / len(answer)
|
||||
print(f"Num OK: {numok}/{len(answer)} {frac_ok}")
|
||||
assert frac_ok >= accept_rate
|
||||
|
||||
|
||||
def check_window(prompts: list[str]):
|
||||
|
||||
def inner(llm: LLM):
|
||||
sliding_window = llm.llm_engine.model_config.get_sliding_window()
|
||||
assert sliding_window and sliding_window > 0
|
||||
assert any(
|
||||
len(llm.get_tokenizer().tokenize(prompt)) > sliding_window
|
||||
for prompt in prompts)
|
||||
|
||||
return inner
|
||||
@ -1,341 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm.core.block_manager import SelfAttnBlockSpaceManager
|
||||
from vllm.core.interfaces import AllocStatus
|
||||
from vllm.sequence import Logprob, SequenceStatus
|
||||
from vllm.utils import chunk_list
|
||||
|
||||
from ..utils import create_dummy_prompt, create_seq_group
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [16])
|
||||
@pytest.mark.parametrize("num_gpu_blocks", [8, 40, 80])
|
||||
@pytest.mark.parametrize("num_seqs_per_group", [1, 4])
|
||||
@pytest.mark.parametrize("watermark", [0.0, 0.5])
|
||||
def test_can_allocate_seq_group(block_size: int, num_seqs_per_group: int,
|
||||
num_gpu_blocks: int, watermark: float):
|
||||
block_manager = SelfAttnBlockSpaceManager(
|
||||
block_size=block_size,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=1024,
|
||||
watermark=watermark,
|
||||
)
|
||||
num_watermark_blocks = int(watermark * num_gpu_blocks)
|
||||
|
||||
num_output_blocks_per_seq = 1
|
||||
|
||||
# NOTE: This should be num_output_blocks_per_seq * num_seqs_per_group, but
|
||||
# the current implementation assumes all seqs are new prompts / don't have
|
||||
# different output lens.
|
||||
num_output_blocks = num_output_blocks_per_seq
|
||||
|
||||
for num_prompt_blocks in range(1, num_gpu_blocks - num_output_blocks):
|
||||
seq_group = create_seq_group(
|
||||
seq_prompt_len=block_size * num_prompt_blocks,
|
||||
seq_output_lens=[
|
||||
block_size * num_output_blocks_per_seq
|
||||
for _ in range(num_seqs_per_group)
|
||||
],
|
||||
)
|
||||
|
||||
assert num_prompt_blocks + num_output_blocks <= num_gpu_blocks
|
||||
|
||||
can_allocate_result = block_manager.can_allocate(seq_group)
|
||||
|
||||
num_required_blocks = num_prompt_blocks + num_output_blocks
|
||||
|
||||
if num_gpu_blocks - num_required_blocks < num_watermark_blocks:
|
||||
assert can_allocate_result == AllocStatus.NEVER
|
||||
elif num_gpu_blocks >= num_required_blocks:
|
||||
assert can_allocate_result == AllocStatus.OK
|
||||
else:
|
||||
assert can_allocate_result == AllocStatus.LATER
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [1, 8])
|
||||
@pytest.mark.parametrize("prompt_len", [1, 7, 8])
|
||||
@pytest.mark.parametrize("num_slots_to_append", [1, 8, 129])
|
||||
@pytest.mark.parametrize("num_lookahead_slots", [0, 10])
|
||||
def test_append_slots(block_size, prompt_len, num_slots_to_append,
|
||||
num_lookahead_slots):
|
||||
"""Verify append_slots consumes the correct number of blocks from the block
|
||||
table.
|
||||
"""
|
||||
|
||||
num_gpu_blocks = 1024
|
||||
watermark = 0.1
|
||||
block_manager = SelfAttnBlockSpaceManager(
|
||||
block_size=block_size,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=0,
|
||||
watermark=watermark,
|
||||
)
|
||||
|
||||
seq_group = create_seq_group(
|
||||
seq_prompt_len=prompt_len,
|
||||
seq_output_lens=[0],
|
||||
)
|
||||
|
||||
# Allocate seq
|
||||
assert block_manager.can_allocate(seq_group)
|
||||
block_manager.allocate(seq_group)
|
||||
|
||||
# Seq seq to RUNNING
|
||||
seq = seq_group.get_seqs()[0]
|
||||
seq.status = SequenceStatus.RUNNING
|
||||
|
||||
# Append tokens to the sequeqnce
|
||||
for token_id in range(num_slots_to_append):
|
||||
seq.append_token_id(token_id, {token_id: Logprob(0.0)})
|
||||
|
||||
# Append slots for new tokens and lookahead slots.
|
||||
free_blocks_before_append = block_manager.get_num_free_gpu_blocks()
|
||||
block_manager.append_slots(seq, num_lookahead_slots)
|
||||
num_consumed_blocks = (free_blocks_before_append -
|
||||
block_manager.get_num_free_gpu_blocks())
|
||||
|
||||
# Expect consumed blocks to be new blocks required to support the new slots.
|
||||
expected_consumed_blocks = len(
|
||||
list(
|
||||
chunk_list(
|
||||
list(
|
||||
range(prompt_len + num_slots_to_append +
|
||||
num_lookahead_slots)),
|
||||
block_size))) - len(
|
||||
list(chunk_list(list(range(prompt_len)), block_size)))
|
||||
assert num_consumed_blocks == expected_consumed_blocks
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [8])
|
||||
@pytest.mark.parametrize("num_cpu_blocks", [4])
|
||||
@pytest.mark.parametrize("num_gpu_blocks", [4])
|
||||
@pytest.mark.parametrize("num_lookahead_slots", [0, 2, 10])
|
||||
@pytest.mark.parametrize("enable_caching", [False, True])
|
||||
def test_swap(block_size, num_cpu_blocks, num_gpu_blocks, num_lookahead_slots,
|
||||
enable_caching):
|
||||
"""Verify blocks number on src/desc device is correct after swapping in/out
|
||||
sequence group (not missing or extra blocks).
|
||||
"""
|
||||
block_manager = SelfAttnBlockSpaceManager(block_size,
|
||||
num_cpu_blocks,
|
||||
num_gpu_blocks,
|
||||
watermark=0,
|
||||
enable_caching=enable_caching)
|
||||
prompt, seq_group = create_dummy_prompt("1", prompt_length=block_size - 1)
|
||||
prompt.status = SequenceStatus.WAITING
|
||||
block_manager.allocate(seq_group)
|
||||
|
||||
# Emulate a forward pass by appending a single token.
|
||||
# The block manager then knows how many unprocessed
|
||||
# tokens will be written in the next forward pass.
|
||||
token_id = 0
|
||||
prompt.status = SequenceStatus.RUNNING
|
||||
prompt.append_token_id(token_id, {token_id: Logprob(0.0)})
|
||||
|
||||
# Swap seq group from GPU -> CPU.
|
||||
gpu_blocks = block_manager.get_block_table(prompt)
|
||||
assert block_manager.can_swap_out(seq_group)
|
||||
before_cpu_blocks = block_manager.get_num_free_cpu_blocks()
|
||||
before_gpu_blocks = block_manager.get_num_free_gpu_blocks()
|
||||
mapping = block_manager.swap_out(seq_group)
|
||||
mapping_keys = [key for key, _ in mapping]
|
||||
assert mapping_keys == gpu_blocks
|
||||
after_cpu_blocks = block_manager.get_num_free_cpu_blocks()
|
||||
after_gpu_blocks = block_manager.get_num_free_gpu_blocks()
|
||||
assert before_cpu_blocks == after_cpu_blocks + len(gpu_blocks)
|
||||
assert before_gpu_blocks + len(gpu_blocks) == after_gpu_blocks
|
||||
prompt.status = SequenceStatus.SWAPPED
|
||||
|
||||
# Swap seq group from CPU -> GPU.
|
||||
assert block_manager.can_swap_in(seq_group, num_lookahead_slots)
|
||||
before_cpu_blocks = block_manager.get_num_free_cpu_blocks()
|
||||
before_gpu_blocks = block_manager.get_num_free_gpu_blocks()
|
||||
mapping = block_manager.swap_in(seq_group)
|
||||
cpu_blocks = block_manager.get_block_table(prompt)
|
||||
mapping_keys = [key for key, _ in mapping]
|
||||
assert mapping_keys == [cpu_blocks[0]]
|
||||
after_cpu_blocks = block_manager.get_num_free_cpu_blocks()
|
||||
after_gpu_blocks = block_manager.get_num_free_gpu_blocks()
|
||||
assert before_gpu_blocks == after_gpu_blocks + len(cpu_blocks)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [8])
|
||||
@pytest.mark.parametrize("num_gpu_blocks", [4])
|
||||
@pytest.mark.parametrize("num_lookahead_slots", [3, 8, 10])
|
||||
@pytest.mark.parametrize("enable_caching", [True, False])
|
||||
def test_can_swap(block_size, num_gpu_blocks, num_lookahead_slots,
|
||||
enable_caching):
|
||||
""" Verify the block manager can correctly determine if a sequence group
|
||||
can be swapped in/out.
|
||||
"""
|
||||
num_cpu_blocks = num_gpu_blocks
|
||||
block_manager = SelfAttnBlockSpaceManager(block_size,
|
||||
num_cpu_blocks,
|
||||
num_gpu_blocks,
|
||||
watermark=0,
|
||||
enable_caching=enable_caching)
|
||||
prompt, seq_group = create_dummy_prompt(
|
||||
"1", prompt_length=(num_gpu_blocks - 1) * block_size - 1)
|
||||
prompt.status = SequenceStatus.WAITING
|
||||
block_manager.allocate(seq_group)
|
||||
prompt.status = SequenceStatus.RUNNING
|
||||
|
||||
# Swap seq group from GPU -> CPU.
|
||||
gpu_blocks = block_manager.get_block_table(prompt)
|
||||
assert block_manager.can_swap_out(seq_group)
|
||||
before_cpu_blocks = block_manager.get_num_free_cpu_blocks()
|
||||
before_gpu_blocks = block_manager.get_num_free_gpu_blocks()
|
||||
mapping = block_manager.swap_out(seq_group)
|
||||
mapping_keys = [key for key, _ in mapping]
|
||||
assert mapping_keys == gpu_blocks
|
||||
after_cpu_blocks = block_manager.get_num_free_cpu_blocks()
|
||||
after_gpu_blocks = block_manager.get_num_free_gpu_blocks()
|
||||
assert before_cpu_blocks == after_cpu_blocks + len(gpu_blocks)
|
||||
assert before_gpu_blocks + len(gpu_blocks) == after_gpu_blocks
|
||||
prompt.status = SequenceStatus.SWAPPED
|
||||
|
||||
# At this moment, we still have enough free blocks to swap in the seq group.
|
||||
if num_lookahead_slots <= block_size:
|
||||
assert block_manager.can_swap_in(seq_group,
|
||||
num_lookahead_slots) == AllocStatus.OK
|
||||
else:
|
||||
assert block_manager.can_swap_in(
|
||||
seq_group, num_lookahead_slots) == AllocStatus.NEVER
|
||||
|
||||
# During Swapped out, 2 cached blocks were evicted from the GPU,
|
||||
# so the prompt1 can't be swapped in
|
||||
prompt2_len = 2 * block_size - 1
|
||||
prompt2, seq_group2 = create_dummy_prompt(
|
||||
"2",
|
||||
prompt_length=prompt2_len,
|
||||
prompt_tokens=[10000 + i for i in range(prompt2_len)])
|
||||
prompt2.status = SequenceStatus.WAITING
|
||||
block_manager.allocate(seq_group2)
|
||||
|
||||
# Swap seq group from CPU -> GPU.
|
||||
if num_lookahead_slots <= block_size:
|
||||
assert block_manager.can_swap_in(
|
||||
seq_group, num_lookahead_slots) == AllocStatus.LATER
|
||||
else:
|
||||
assert block_manager.can_swap_in(
|
||||
seq_group, num_lookahead_slots) == AllocStatus.NEVER
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_lookahead_slots", [0, 2, 10])
|
||||
@pytest.mark.parametrize("enable_caching", [False, True])
|
||||
def test_swap_in_infeasible(num_lookahead_slots, enable_caching):
|
||||
"""Verifies that swapping fails if there is not enough free blocks
|
||||
to account for unseen tokens and lookahead_slots.
|
||||
"""
|
||||
block_size = 8
|
||||
num_cpu_blocks = 1
|
||||
num_gpu_blocks = 1
|
||||
block_manager = SelfAttnBlockSpaceManager(block_size,
|
||||
num_cpu_blocks,
|
||||
num_gpu_blocks,
|
||||
watermark=0,
|
||||
enable_caching=enable_caching)
|
||||
prompt_length = block_size - 3
|
||||
assert prompt_length > 0
|
||||
prompt, seq_group = create_dummy_prompt("1", prompt_length=prompt_length)
|
||||
prompt.status = SequenceStatus.WAITING
|
||||
block_manager.allocate(seq_group)
|
||||
# Emulate a forward pass by appending a single token.
|
||||
# The block manager then knows how many unprocessed
|
||||
# tokens will be written in the next forward pass.
|
||||
token_id = 0
|
||||
prompt.status = SequenceStatus.RUNNING
|
||||
prompt.append_token_id(token_id, {token_id: Logprob(0.0)})
|
||||
|
||||
# Swap seq group from GPU -> CPU.
|
||||
assert block_manager.can_swap_out(seq_group)
|
||||
block_manager.swap_out(seq_group)
|
||||
prompt.status = SequenceStatus.SWAPPED
|
||||
|
||||
# Swap seq group from CPU -> GPU.
|
||||
# The number of unseen tokens is 1. If the number of existing
|
||||
# tokens plus the unseen ones and number of lookahead slots exceeds
|
||||
# the total number of available GPU blocks then the swap
|
||||
# should fail.
|
||||
num_unseen_tokens = 1
|
||||
if (num_lookahead_slots + num_unseen_tokens +
|
||||
prompt_length) <= (block_size * num_gpu_blocks):
|
||||
assert block_manager.can_swap_in(seq_group,
|
||||
num_lookahead_slots) == AllocStatus.OK
|
||||
else:
|
||||
assert block_manager.can_swap_in(
|
||||
seq_group, num_lookahead_slots) == AllocStatus.NEVER
|
||||
|
||||
|
||||
# TODO(cade/kaiyang): add comprehensive tests for swapping at allocator level.
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [8, 16])
|
||||
@pytest.mark.parametrize("prompt_len", [10, 300, 1000])
|
||||
@pytest.mark.parametrize("num_slots_to_append", [50])
|
||||
@pytest.mark.parametrize("sliding_window", [20, 32, 200, 512])
|
||||
def test_sliding_window(block_size, prompt_len, num_slots_to_append,
|
||||
sliding_window):
|
||||
"""Verify append_slots consumes the correct number of blocks from the block
|
||||
table.
|
||||
"""
|
||||
|
||||
num_gpu_blocks = 1024
|
||||
watermark = 0.1
|
||||
block_manager = SelfAttnBlockSpaceManager(
|
||||
block_size=block_size,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=0,
|
||||
watermark=watermark,
|
||||
sliding_window=sliding_window,
|
||||
)
|
||||
|
||||
def check_used(min_n, max_n=None):
|
||||
if max_n is None:
|
||||
max_n = min_n
|
||||
used = num_gpu_blocks - block_manager.get_num_free_gpu_blocks()
|
||||
assert min_n <= used
|
||||
assert used <= max_n
|
||||
|
||||
def num_blocks(num_tokens):
|
||||
return (num_tokens + block_size - 1) // block_size
|
||||
|
||||
check_used(0)
|
||||
|
||||
seq_group = create_seq_group(
|
||||
seq_prompt_len=prompt_len,
|
||||
seq_output_lens=[0],
|
||||
)
|
||||
|
||||
check_used(0)
|
||||
|
||||
# Allocate seq
|
||||
assert block_manager.can_allocate(seq_group)
|
||||
block_manager.allocate(seq_group)
|
||||
|
||||
check_used(num_blocks(prompt_len))
|
||||
|
||||
# Seq seq to RUNNING
|
||||
seq = seq_group.get_seqs()[0]
|
||||
seq.status = SequenceStatus.RUNNING
|
||||
|
||||
seq.data.update_num_computed_tokens(prompt_len)
|
||||
check_used(num_blocks(prompt_len))
|
||||
|
||||
# this is how we compute it in SelfAttnBlockSpaceManager.__init__
|
||||
sliding_blocks = (sliding_window // block_size) + 2
|
||||
# plus one block for null block
|
||||
sliding_blocks += 1
|
||||
|
||||
# Append tokens to the sequeqnce
|
||||
for token_id in range(num_slots_to_append):
|
||||
seq.append_token_id(token_id, {token_id: Logprob(0.0)})
|
||||
seq.data.update_num_computed_tokens(1)
|
||||
block_manager.append_slots(seq, num_lookahead_slots=0)
|
||||
if prompt_len < sliding_window + 10:
|
||||
check_used(0, sliding_blocks + 1)
|
||||
else:
|
||||
check_used(sliding_blocks, sliding_blocks + 1)
|
||||
@ -1,577 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm.core.block.block_table import BlockTable
|
||||
from vllm.core.block.cpu_gpu_block_allocator import CpuGpuBlockAllocator
|
||||
from vllm.utils import Device, cdiv, chunk_list
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [16])
|
||||
@pytest.mark.parametrize("sequence_len", [1, 16, 129])
|
||||
def test_allocate_naive(block_size: int, sequence_len: int):
|
||||
"""Test the allocation of blocks using the naive allocator.
|
||||
|
||||
This test creates a CpuGpuBlockAllocator with the specified block size and
|
||||
number of blocks. It then allocates multiple BlockTables with varying
|
||||
sequence lengths and verifies that the number of free blocks decreases as
|
||||
expected after each allocation.
|
||||
"""
|
||||
assert block_size > 1
|
||||
num_gpu_blocks = 1024
|
||||
|
||||
allocator = CpuGpuBlockAllocator.create(
|
||||
allocator_type="naive",
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=1024,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
token_ids = list(range(sequence_len))
|
||||
num_blocks_per_alloc = len(list(chunk_list(token_ids, block_size)))
|
||||
|
||||
block_tables: list[BlockTable] = []
|
||||
for i in range(5):
|
||||
assert allocator.get_num_free_blocks(
|
||||
device=Device.GPU) == num_gpu_blocks - i * num_blocks_per_alloc
|
||||
|
||||
block_tables.append(
|
||||
BlockTable(
|
||||
block_size=block_size,
|
||||
block_allocator=allocator,
|
||||
))
|
||||
block_tables[-1].allocate(token_ids=token_ids, device=Device.GPU)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [16])
|
||||
@pytest.mark.parametrize("sequence_len", [1, 16, 129])
|
||||
def test_allocate_prefix_caching(block_size: int, sequence_len: int):
|
||||
"""Test the allocation of blocks using the prefix caching allocator.
|
||||
|
||||
This test creates a CpuGpuBlockAllocator with the specified block size and
|
||||
number of blocks, using the prefix caching allocator. It then allocates
|
||||
multiple BlockTables with varying sequence lengths and verifies that the
|
||||
number of free blocks decreases as expected after each allocation.
|
||||
|
||||
The test expects all sequences to share allocations, except for their last
|
||||
block, which may be mutable. It calculates the expected number of immutable
|
||||
and mutable blocks per allocation based on the sequence length and block
|
||||
size.
|
||||
"""
|
||||
assert block_size > 1
|
||||
num_gpu_blocks = 1024
|
||||
|
||||
allocator = CpuGpuBlockAllocator.create(
|
||||
allocator_type="prefix_caching",
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=1024,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
token_ids = list(range(sequence_len))
|
||||
chunked_tokens = list(chunk_list(token_ids, block_size))
|
||||
num_mutable_blocks_per_alloc = 0 if len(
|
||||
chunked_tokens[-1]) == block_size else 1
|
||||
num_immutable_blocks_per_alloc = len(
|
||||
chunked_tokens) - num_mutable_blocks_per_alloc
|
||||
|
||||
block_tables: list[BlockTable] = []
|
||||
for alloc_i in range(1, 6):
|
||||
|
||||
block_tables.append(
|
||||
BlockTable(
|
||||
block_size=block_size,
|
||||
block_allocator=allocator,
|
||||
))
|
||||
block_tables[-1].allocate(token_ids=token_ids, device=Device.GPU)
|
||||
|
||||
# Expect all sequences to share allocations, except for their last block
|
||||
# (which may be mutable).
|
||||
assert allocator.get_num_free_blocks(
|
||||
device=Device.GPU) == num_gpu_blocks - (
|
||||
num_immutable_blocks_per_alloc + num_mutable_blocks_per_alloc *
|
||||
(alloc_i))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [16])
|
||||
@pytest.mark.parametrize("sequence_len", [1, 16, 129])
|
||||
@pytest.mark.parametrize("allocator_type", ["naive", "prefix_caching"])
|
||||
@pytest.mark.parametrize("device", ["cpu", "gpu"])
|
||||
def test_allocate_free(block_size: int, sequence_len: int, allocator_type: str,
|
||||
device: str):
|
||||
"""Test the allocation and freeing of blocks using different allocators and
|
||||
devices.
|
||||
|
||||
This test creates a CpuGpuBlockAllocator with the specified block size,
|
||||
number of blocks, allocator type, and device. It then allocates a BlockTable
|
||||
multiple times with the same sequence and verifies that the number of free
|
||||
blocks remains consistent after each allocation and freeing.
|
||||
"""
|
||||
device = Device[device.upper()]
|
||||
|
||||
num_device_blocks = 1024
|
||||
allocator = CpuGpuBlockAllocator.create(
|
||||
allocator_type=allocator_type,
|
||||
num_gpu_blocks=num_device_blocks,
|
||||
num_cpu_blocks=num_device_blocks,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
token_ids = list(range(sequence_len))
|
||||
num_blocks_per_alloc = len(list(chunk_list(token_ids, block_size)))
|
||||
|
||||
block_table = BlockTable(
|
||||
block_size=block_size,
|
||||
block_allocator=allocator,
|
||||
)
|
||||
|
||||
for i in range(5):
|
||||
block_table.allocate(token_ids=token_ids, device=device)
|
||||
assert allocator.get_num_free_blocks(
|
||||
device) == num_device_blocks - num_blocks_per_alloc
|
||||
assert all(block_id is not None
|
||||
for block_id in block_table.physical_block_ids)
|
||||
|
||||
block_table.free()
|
||||
assert allocator.get_num_free_blocks(device) == num_device_blocks
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [1, 8])
|
||||
@pytest.mark.parametrize("sequence_len", [1, 16, 129])
|
||||
@pytest.mark.parametrize("append_len", [1, 16, 129])
|
||||
@pytest.mark.parametrize("allocator_type", ["naive", "prefix_caching"])
|
||||
def test_append_token_ids_allocation(block_size: int, sequence_len: int,
|
||||
append_len: int, allocator_type: str):
|
||||
"""Test the allocation behavior when appending token IDs to a BlockTable.
|
||||
|
||||
This test creates a CpuGpuBlockAllocator with the specified block size,
|
||||
number of blocks, and allocator type. It then allocates a BlockTable with an
|
||||
initial sequence and appends additional token IDs to it. The test verifies
|
||||
that the number of allocated blocks before and after appending matches the
|
||||
expected values.
|
||||
"""
|
||||
|
||||
num_gpu_blocks = 1024
|
||||
|
||||
allocator = CpuGpuBlockAllocator.create(
|
||||
allocator_type=allocator_type,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=1024,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
token_ids = list(range(sequence_len))
|
||||
token_ids_to_append = list(range(append_len))
|
||||
|
||||
block_table = BlockTable(
|
||||
block_size=block_size,
|
||||
block_allocator=allocator,
|
||||
)
|
||||
|
||||
num_expected_blocks_before_append = len(
|
||||
list(chunk_list(token_ids, block_size)))
|
||||
num_expected_appended_blocks = len(
|
||||
list(chunk_list(token_ids + token_ids_to_append,
|
||||
block_size))) - num_expected_blocks_before_append
|
||||
|
||||
block_table.allocate(token_ids=token_ids, device=Device.GPU)
|
||||
|
||||
assert len(
|
||||
block_table.physical_block_ids) == num_expected_blocks_before_append
|
||||
block_table.append_token_ids(token_ids_to_append)
|
||||
assert len(
|
||||
block_table.physical_block_ids
|
||||
) == num_expected_blocks_before_append + num_expected_appended_blocks
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [1, 8])
|
||||
@pytest.mark.parametrize("sequence_len", [1, 16, 129])
|
||||
@pytest.mark.parametrize("num_empty_slots", [1, 16, 129])
|
||||
@pytest.mark.parametrize("allocator_type", ["naive", "prefix_caching"])
|
||||
def test_ensure_num_empty_slots_allocation(block_size: int, sequence_len: int,
|
||||
num_empty_slots: int,
|
||||
allocator_type: str):
|
||||
"""Test the allocation behavior when ensuring a certain number of empty
|
||||
slots in a BlockTable.
|
||||
|
||||
This test creates a CpuGpuBlockAllocator with the specified block size,
|
||||
number of blocks, and allocator type. It then allocates a BlockTable with an
|
||||
initial sequence and ensures a certain number of empty slots. The test
|
||||
verifies that the number of allocated blocks before and after ensuring empty
|
||||
slots matches the expected values. It also checks that filling up the empty
|
||||
slots does not consume additional blocks.
|
||||
"""
|
||||
num_gpu_blocks = 1024
|
||||
|
||||
allocator = CpuGpuBlockAllocator.create(
|
||||
allocator_type=allocator_type,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=1024,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
token_ids = list(range(sequence_len))
|
||||
|
||||
block_table = BlockTable(
|
||||
block_size=block_size,
|
||||
block_allocator=allocator,
|
||||
)
|
||||
|
||||
num_expected_blocks_before_append = len(
|
||||
list(chunk_list(token_ids, block_size)))
|
||||
num_expected_appended_blocks = len(
|
||||
list(chunk_list(token_ids + [-1] * num_empty_slots,
|
||||
block_size))) - num_expected_blocks_before_append
|
||||
|
||||
block_table.allocate(token_ids=token_ids, device=Device.GPU)
|
||||
|
||||
# Assert that the empty slots consume the expected number of additional
|
||||
# blocks.
|
||||
assert len(
|
||||
block_table.physical_block_ids) == num_expected_blocks_before_append
|
||||
block_table.ensure_num_empty_slots(num_empty_slots)
|
||||
assert len(
|
||||
block_table.physical_block_ids
|
||||
) == num_expected_blocks_before_append + num_expected_appended_blocks
|
||||
|
||||
# Now, ensure no additional blocks consumed as we fill up the empty slots.
|
||||
num_free_blocks = allocator.get_num_free_blocks(device=Device.GPU)
|
||||
block_table.append_token_ids(token_ids=list(range(num_empty_slots)))
|
||||
assert num_free_blocks == allocator.get_num_free_blocks(device=Device.GPU)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [1, 8])
|
||||
@pytest.mark.parametrize("sequence_len", [1, 9])
|
||||
@pytest.mark.parametrize("append_len", [1, 16, 129])
|
||||
@pytest.mark.parametrize("append_size", [1, 4, 129])
|
||||
@pytest.mark.parametrize("allocator_type", ["naive", "prefix_caching"])
|
||||
def test_append_token_ids_correct_content(block_size: int, sequence_len: int,
|
||||
append_len: int, allocator_type: str,
|
||||
append_size: int):
|
||||
"""Verify token ids are correctly appended. Appends various amounts of
|
||||
token ids in various append sizes, and verifies the final sequence is
|
||||
correct.
|
||||
"""
|
||||
num_gpu_blocks = 1024
|
||||
|
||||
allocator = CpuGpuBlockAllocator.create(
|
||||
allocator_type=allocator_type,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=1024,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
token_ids = list(range(sequence_len))
|
||||
token_ids_to_append = list(range(append_len))
|
||||
|
||||
block_table = BlockTable(
|
||||
block_size=block_size,
|
||||
block_allocator=allocator,
|
||||
)
|
||||
block_table.allocate(token_ids=token_ids, device=Device.GPU)
|
||||
|
||||
appended_so_far: list[int] = []
|
||||
for append in chunk_list(token_ids_to_append, append_size):
|
||||
block_table.append_token_ids(append)
|
||||
appended_so_far.extend(append)
|
||||
|
||||
assert block_table._get_all_token_ids() == token_ids + appended_so_far
|
||||
|
||||
assert block_table._get_all_token_ids() == token_ids + token_ids_to_append
|
||||
|
||||
|
||||
@pytest.mark.parametrize("seq_len", [1, 9, 129])
|
||||
@pytest.mark.parametrize("block_size", [1, 8])
|
||||
@pytest.mark.parametrize("allocator_type", ["naive", "prefix_caching"])
|
||||
def test_fork(seq_len: int, block_size: int, allocator_type: str):
|
||||
"""Create a sequence using the specified allocator.
|
||||
1. Assert that after forking the sequence, the free block count is the
|
||||
same.
|
||||
2. Assert that the forked sequence has the same physical mappings.
|
||||
3. Then free the original sequence; verify that the free block count is
|
||||
the same.
|
||||
4. Finally, free the forked sequence and verify that the free block
|
||||
count drops to zero.
|
||||
"""
|
||||
num_gpu_blocks = 1024
|
||||
|
||||
allocator = CpuGpuBlockAllocator.create(
|
||||
allocator_type=allocator_type,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=0,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
token_ids = list(range(seq_len))
|
||||
|
||||
block_table = BlockTable(
|
||||
block_size=block_size,
|
||||
block_allocator=allocator,
|
||||
)
|
||||
|
||||
block_table.allocate(token_ids)
|
||||
|
||||
num_free_blocks_before_fork = allocator.get_num_free_blocks(
|
||||
device=Device.GPU)
|
||||
|
||||
forked_block_table = block_table.fork()
|
||||
|
||||
# Expect physical_block_ids and token_ids to match.
|
||||
assert (block_table.physical_block_ids ==
|
||||
forked_block_table.physical_block_ids)
|
||||
assert block_table._get_all_token_ids(
|
||||
) == forked_block_table._get_all_token_ids()
|
||||
|
||||
# Do not expect any additional allocations.
|
||||
assert allocator.get_num_free_blocks(
|
||||
device=Device.GPU) == num_free_blocks_before_fork
|
||||
|
||||
# Free the original blocks. Assert num free blocks does not change, since
|
||||
# refcount is nonzero.
|
||||
block_table.free()
|
||||
assert allocator.get_num_free_blocks(
|
||||
device=Device.GPU) == num_free_blocks_before_fork
|
||||
|
||||
# Expect the forked block table to be unaffected by the free.
|
||||
assert all(block_id is not None
|
||||
for block_id in forked_block_table.physical_block_ids)
|
||||
|
||||
# Free the forked blocks. Assert num free blocks does change, since
|
||||
# refcount is now zero.
|
||||
forked_block_table.free()
|
||||
assert allocator.get_num_free_blocks(device=Device.GPU) == num_gpu_blocks
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [8])
|
||||
@pytest.mark.parametrize("sequence_len", [1, 16, 129])
|
||||
@pytest.mark.parametrize("append_len", [1, 16, 129])
|
||||
@pytest.mark.parametrize("appender", ["forked", "original"])
|
||||
@pytest.mark.parametrize("allocator_type", ["naive", "prefix_caching"])
|
||||
def test_cow(block_size: int, sequence_len: int, append_len: int,
|
||||
allocator_type: str, appender: str):
|
||||
"""Fork a sequence; append to the forked sequence; verify there's a CoW.
|
||||
"""
|
||||
num_gpu_blocks = 1024
|
||||
|
||||
allocator = CpuGpuBlockAllocator.create(
|
||||
allocator_type=allocator_type,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=0,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
token_ids = list(range(sequence_len))
|
||||
token_ids_to_append = list(range(append_len))
|
||||
|
||||
original_block_table = BlockTable(
|
||||
block_size=block_size,
|
||||
block_allocator=allocator,
|
||||
)
|
||||
|
||||
num_expected_non_cow_blocks = cdiv(sequence_len, block_size)
|
||||
num_expected_cow_blocks = cdiv(sequence_len + append_len,
|
||||
block_size) - (sequence_len // block_size)
|
||||
|
||||
original_block_table.allocate(token_ids=token_ids, device=Device.GPU)
|
||||
original_block_ids = original_block_table.physical_block_ids[:]
|
||||
|
||||
print("original_block_ids = {}".format(original_block_ids))
|
||||
forked_block_table = original_block_table.fork()
|
||||
|
||||
# Expect no additional allocation (copy on _write_).
|
||||
assert allocator.get_num_free_blocks(
|
||||
Device.GPU) == (num_gpu_blocks - num_expected_non_cow_blocks)
|
||||
|
||||
if appender == "forked":
|
||||
appender_block_table = forked_block_table
|
||||
static_block_table = original_block_table
|
||||
elif appender == "original":
|
||||
appender_block_table = original_block_table
|
||||
static_block_table = forked_block_table
|
||||
else:
|
||||
raise ValueError(f"unknown test config {appender=}")
|
||||
|
||||
# Write tokens.
|
||||
appender_block_table.append_token_ids(token_ids_to_append)
|
||||
|
||||
# Expect the non-appending block table to have no change.
|
||||
assert static_block_table.physical_block_ids == original_block_ids
|
||||
assert appender_block_table.physical_block_ids != original_block_ids
|
||||
|
||||
# Expect the blocks changed during append to have a CoW.
|
||||
assert allocator.get_num_free_blocks(
|
||||
Device.GPU) == num_gpu_blocks - (num_expected_non_cow_blocks +
|
||||
num_expected_cow_blocks)
|
||||
|
||||
cows = allocator.clear_copy_on_writes()
|
||||
if sequence_len % block_size > 0:
|
||||
# If the last block in the sequence is not full, then when appending we
|
||||
# expect a CoW.
|
||||
assert cows
|
||||
|
||||
cow_block_id = sequence_len // block_size
|
||||
expected_src = static_block_table.physical_block_ids[cow_block_id]
|
||||
expected_dst = appender_block_table.physical_block_ids[cow_block_id]
|
||||
|
||||
assert (expected_src, expected_dst) in cows
|
||||
else:
|
||||
# Otherwise, there should be no copy-on-write.
|
||||
assert not cows
|
||||
|
||||
static_block_table.free()
|
||||
appender_block_table.free()
|
||||
|
||||
# After free, expect all blocks to be freed.
|
||||
assert allocator.get_num_free_blocks(Device.GPU) == num_gpu_blocks
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [8])
|
||||
@pytest.mark.parametrize("sequence_len", [1, 16, 129])
|
||||
@pytest.mark.parametrize("append_len", [1, 16, 129])
|
||||
@pytest.mark.parametrize("lookahead_slots", [1, 16, 129])
|
||||
@pytest.mark.parametrize("appender", ["forked", "original"])
|
||||
@pytest.mark.parametrize("allocator_type", ["naive", "prefix_caching"])
|
||||
def test_cow_lookahead_simple(block_size: int, sequence_len: int,
|
||||
append_len: int, lookahead_slots: int,
|
||||
allocator_type: str, appender: str):
|
||||
"""Similar to test_cow, except with lookahead allocation. The assertions are
|
||||
less rigorous due to the complexity of the property under test.
|
||||
"""
|
||||
num_gpu_blocks = 1024
|
||||
|
||||
allocator = CpuGpuBlockAllocator.create(
|
||||
allocator_type=allocator_type,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=0,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
token_ids = list(range(sequence_len))
|
||||
token_ids_to_append = list(range(append_len))
|
||||
|
||||
original_block_table = BlockTable(
|
||||
block_size=block_size,
|
||||
block_allocator=allocator,
|
||||
)
|
||||
|
||||
original_block_table.allocate(token_ids=token_ids, device=Device.GPU)
|
||||
|
||||
# Allocate lookahead slots.
|
||||
original_block_table.ensure_num_empty_slots(lookahead_slots)
|
||||
original_block_ids = original_block_table.physical_block_ids[:]
|
||||
|
||||
forked_block_table = original_block_table.fork()
|
||||
|
||||
if appender == "forked":
|
||||
appender_block_table = forked_block_table
|
||||
static_block_table = original_block_table
|
||||
elif appender == "original":
|
||||
appender_block_table = original_block_table
|
||||
static_block_table = forked_block_table
|
||||
else:
|
||||
raise ValueError(f"unknown test config {appender=}")
|
||||
|
||||
# Write tokens.
|
||||
appender_block_table.append_token_ids(token_ids_to_append)
|
||||
|
||||
# Expect the non-appending block table to have no change.
|
||||
assert static_block_table.physical_block_ids == original_block_ids
|
||||
assert appender_block_table.physical_block_ids != original_block_ids
|
||||
|
||||
cows = allocator.clear_copy_on_writes()
|
||||
|
||||
# Always expect copy-on-write
|
||||
assert cows
|
||||
|
||||
if sequence_len % block_size > 0:
|
||||
# If the last block in the sequence is not full, then when appending we
|
||||
# expect a CoW.
|
||||
assert cows
|
||||
|
||||
cow_block_id = sequence_len // block_size
|
||||
expected_src = static_block_table.physical_block_ids[cow_block_id]
|
||||
expected_dst = appender_block_table.physical_block_ids[cow_block_id]
|
||||
|
||||
assert (expected_src, expected_dst) in cows
|
||||
|
||||
static_block_table.free()
|
||||
appender_block_table.free()
|
||||
|
||||
# After free, expect all blocks to be freed.
|
||||
assert allocator.get_num_free_blocks(Device.GPU) == num_gpu_blocks
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block_size", [1, 8])
|
||||
@pytest.mark.parametrize("sequence_len", [1, 16, 129])
|
||||
@pytest.mark.parametrize("num_new_tokens", [1, 16, 129])
|
||||
@pytest.mark.parametrize("num_lookahead_slots", [1, 7, 8])
|
||||
@pytest.mark.parametrize("allocator_type", ["naive", "prefix_caching"])
|
||||
def test_num_blocks_touched_by_append_slots(block_size: int, sequence_len: int,
|
||||
num_new_tokens: int,
|
||||
num_lookahead_slots: int,
|
||||
allocator_type: str):
|
||||
"""Verify correct calculation of get_num_blocks_touched_by_append_slots.
|
||||
|
||||
This is done by using copy-on-write, which requires any modified block to
|
||||
be copied before write if the refcount > 1. We set the refcount>1 by forking
|
||||
a sequence, then measure the free blocks before and after an append. If the
|
||||
number of consumed blocks equals what `get_num_blocks_touched_by_append_
|
||||
slots` returns, then the calculation is correct.
|
||||
"""
|
||||
|
||||
num_gpu_blocks = 1024
|
||||
|
||||
allocator = CpuGpuBlockAllocator.create(
|
||||
allocator_type=allocator_type,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=0,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
token_ids = list(range(sequence_len))
|
||||
token_ids_to_append = list(range(num_new_tokens))
|
||||
|
||||
block_table = BlockTable(
|
||||
block_size=block_size,
|
||||
block_allocator=allocator,
|
||||
)
|
||||
|
||||
block_table.allocate(token_ids=token_ids, device=Device.GPU)
|
||||
|
||||
# Add lookahead before fork so both sequences have the same lookahead
|
||||
# blocks.
|
||||
block_table.ensure_num_empty_slots(num_empty_slots=num_lookahead_slots)
|
||||
|
||||
# Fork sequence so that every block has refcount > 1.
|
||||
_ = block_table.fork()
|
||||
|
||||
# Determine how many blocks should be touched.
|
||||
expected_num_touched_blocks = (
|
||||
block_table.get_num_blocks_touched_by_append_slots(
|
||||
token_ids=token_ids_to_append,
|
||||
num_lookahead_slots=num_lookahead_slots))
|
||||
|
||||
# Measure how many blocks are touched by measuring num_free_blocks before
|
||||
# and after the append.
|
||||
#
|
||||
# We expect append_token_ids to CoW all mutated blocks that have refcount>1.
|
||||
num_free_blocks_before_append = allocator.get_num_free_blocks(Device.GPU)
|
||||
block_table.append_token_ids(token_ids_to_append, num_lookahead_slots)
|
||||
num_consumed_blocks = (num_free_blocks_before_append -
|
||||
allocator.get_num_free_blocks(Device.GPU))
|
||||
|
||||
# TODO(cade) ensure equality when num_lookahead_slots > 0.
|
||||
# The reason we have < is because lookahead blocks are not copied eagerly;
|
||||
# they are copied on first write. This will cause issues for beam search +
|
||||
# speculative decoding. This is acceptable for now as it is a large effort
|
||||
# to combine the two. To fix this, we can ensure single sequence ownership
|
||||
# of lookahead blocks by appending empty slots to each block, which will
|
||||
# trigger the CoW.
|
||||
#
|
||||
# Until then, we can accept that the consumed tokens are <= the expected
|
||||
# tokens when appending with lookahead.
|
||||
if num_lookahead_slots > 0:
|
||||
assert num_consumed_blocks <= expected_num_touched_blocks
|
||||
else:
|
||||
assert num_consumed_blocks == expected_num_touched_blocks
|
||||
@ -1,45 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import random
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm.core.block.common import RefCounter
|
||||
|
||||
|
||||
@pytest.mark.parametrize("seed", list(range(20)))
|
||||
@pytest.mark.parametrize("num_incrs", [1, 100])
|
||||
@pytest.mark.parametrize("num_blocks", [1024])
|
||||
def test_incr(seed: int, num_incrs: int, num_blocks: int):
|
||||
random.seed(seed)
|
||||
|
||||
all_block_indices = list(range(num_blocks))
|
||||
counter = RefCounter(all_block_indices=all_block_indices)
|
||||
|
||||
block_id = random.randint(0, num_blocks - 1)
|
||||
for i in range(num_incrs):
|
||||
value = counter.incr(block_id)
|
||||
assert value == i + 1
|
||||
|
||||
|
||||
@pytest.mark.parametrize("seed", list(range(20)))
|
||||
@pytest.mark.parametrize("num_incrs", [1, 100])
|
||||
@pytest.mark.parametrize("num_blocks", [1024])
|
||||
def test_incr_decr(seed: int, num_incrs: int, num_blocks: int):
|
||||
random.seed(seed)
|
||||
|
||||
all_block_indices = list(range(num_blocks))
|
||||
counter = RefCounter(all_block_indices=all_block_indices)
|
||||
|
||||
block_id = random.randint(0, num_blocks - 1)
|
||||
for i in range(num_incrs):
|
||||
value = counter.incr(block_id)
|
||||
assert value == i + 1
|
||||
|
||||
for i in range(num_incrs):
|
||||
value = counter.decr(block_id)
|
||||
assert value == num_incrs - (i + 1)
|
||||
|
||||
with pytest.raises(AssertionError):
|
||||
counter.decr(block_id)
|
||||
@ -1,96 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm.core.block.cpu_gpu_block_allocator import CpuGpuBlockAllocator
|
||||
from vllm.utils import Device, chunk_list
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_cpu_blocks", [0, 512])
|
||||
@pytest.mark.parametrize("num_gpu_blocks", [1024])
|
||||
@pytest.mark.parametrize("block_size", [16])
|
||||
@pytest.mark.parametrize("allocator_type", ["naive", "prefix_caching"])
|
||||
def test_allocate_mutable_block(num_cpu_blocks: int, num_gpu_blocks: int,
|
||||
block_size: int, allocator_type: str):
|
||||
allocator = CpuGpuBlockAllocator.create(
|
||||
allocator_type=allocator_type,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=num_cpu_blocks,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
assert allocator.get_num_free_blocks(Device.CPU) == num_cpu_blocks
|
||||
assert allocator.get_num_free_blocks(Device.GPU) == num_gpu_blocks
|
||||
|
||||
cpu_blocks = [
|
||||
allocator.allocate_mutable_block(prev_block=None, device=Device.CPU)
|
||||
for _ in range(num_cpu_blocks)
|
||||
]
|
||||
assert allocator.get_num_free_blocks(Device.CPU) == 0
|
||||
assert allocator.get_num_free_blocks(Device.GPU) == num_gpu_blocks
|
||||
|
||||
gpu_blocks = [
|
||||
allocator.allocate_mutable_block(prev_block=None, device=Device.GPU)
|
||||
for _ in range(num_gpu_blocks)
|
||||
]
|
||||
assert allocator.get_num_free_blocks(Device.CPU) == 0
|
||||
assert allocator.get_num_free_blocks(Device.GPU) == 0
|
||||
|
||||
_ = [allocator.free(block) for block in cpu_blocks]
|
||||
assert allocator.get_num_free_blocks(Device.CPU) == num_cpu_blocks
|
||||
assert allocator.get_num_free_blocks(Device.GPU) == 0
|
||||
|
||||
_ = [allocator.free(block) for block in gpu_blocks]
|
||||
assert allocator.get_num_free_blocks(Device.CPU) == num_cpu_blocks
|
||||
assert allocator.get_num_free_blocks(Device.GPU) == num_gpu_blocks
|
||||
|
||||
|
||||
@pytest.mark.parametrize("num_cpu_blocks", [0, 512])
|
||||
@pytest.mark.parametrize("num_gpu_blocks", [1024])
|
||||
@pytest.mark.parametrize("block_size", [2])
|
||||
@pytest.mark.parametrize("allocator_type", ["naive", "prefix_caching"])
|
||||
def test_allocate_immutable_block(num_cpu_blocks: int, num_gpu_blocks: int,
|
||||
block_size: int, allocator_type: str):
|
||||
allocator = CpuGpuBlockAllocator.create(
|
||||
allocator_type=allocator_type,
|
||||
num_gpu_blocks=num_gpu_blocks,
|
||||
num_cpu_blocks=num_cpu_blocks,
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
unique_token_ids = list(
|
||||
range((num_cpu_blocks + num_gpu_blocks) * block_size))
|
||||
gpu_token_ids = list(
|
||||
chunk_list(unique_token_ids[:num_gpu_blocks * block_size], block_size))
|
||||
cpu_token_ids = list(
|
||||
chunk_list(unique_token_ids[num_gpu_blocks * block_size:], block_size))
|
||||
|
||||
assert allocator.get_num_free_blocks(Device.CPU) == num_cpu_blocks
|
||||
assert allocator.get_num_free_blocks(Device.GPU) == num_gpu_blocks
|
||||
|
||||
cpu_blocks = [
|
||||
allocator.allocate_immutable_block(prev_block=None,
|
||||
token_ids=token_ids,
|
||||
device=Device.CPU)
|
||||
for token_ids in cpu_token_ids
|
||||
]
|
||||
assert allocator.get_num_free_blocks(Device.CPU) == 0
|
||||
assert allocator.get_num_free_blocks(Device.GPU) == num_gpu_blocks
|
||||
|
||||
gpu_blocks = [
|
||||
allocator.allocate_immutable_block(prev_block=None,
|
||||
token_ids=token_ids,
|
||||
device=Device.GPU)
|
||||
for token_ids in gpu_token_ids
|
||||
]
|
||||
assert allocator.get_num_free_blocks(Device.CPU) == 0
|
||||
assert allocator.get_num_free_blocks(Device.GPU) == 0
|
||||
|
||||
_ = [allocator.free(block) for block in cpu_blocks]
|
||||
assert allocator.get_num_free_blocks(Device.CPU) == num_cpu_blocks
|
||||
assert allocator.get_num_free_blocks(Device.GPU) == 0
|
||||
|
||||
_ = [allocator.free(block) for block in gpu_blocks]
|
||||
assert allocator.get_num_free_blocks(Device.CPU) == num_cpu_blocks
|
||||
assert allocator.get_num_free_blocks(Device.GPU) == num_gpu_blocks
|
||||
@ -1,148 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm.core.block.interfaces import Block, BlockAllocator
|
||||
from vllm.core.block.naive_block import NaiveBlock, NaiveBlockAllocator
|
||||
|
||||
|
||||
class TestNaiveBlockAllocator:
|
||||
|
||||
@staticmethod
|
||||
def create_allocate_lambda(allocate_type: str,
|
||||
allocator: NaiveBlockAllocator,
|
||||
prev_block: Optional[Block],
|
||||
token_ids: list[int]):
|
||||
if allocate_type == "immutable":
|
||||
allocate_block = lambda: allocator.allocate_immutable_block(
|
||||
prev_block=prev_block, token_ids=token_ids)
|
||||
elif allocate_type == "mutable":
|
||||
allocate_block = lambda: allocator.allocate_mutable_block(
|
||||
prev_block=prev_block)
|
||||
else:
|
||||
raise ValueError()
|
||||
|
||||
return allocate_block
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.parametrize("allocate_type", ["immutable", "mutable"])
|
||||
@pytest.mark.parametrize("num_blocks", [1, 1024])
|
||||
@pytest.mark.parametrize("block_size", [1, 16])
|
||||
def test_allocate_ooms(allocate_type: str, num_blocks: int,
|
||||
block_size: int):
|
||||
allocator = NaiveBlockAllocator(create_block=NaiveBlock,
|
||||
num_blocks=num_blocks,
|
||||
block_size=block_size)
|
||||
allocate_block = TestNaiveBlockAllocator.create_allocate_lambda(
|
||||
allocate_type,
|
||||
allocator,
|
||||
prev_block=None,
|
||||
token_ids=list(range(block_size)))
|
||||
|
||||
[allocate_block() for _ in range(num_blocks)]
|
||||
with pytest.raises(BlockAllocator.NoFreeBlocksError):
|
||||
allocate_block()
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.parametrize("allocate_type", ["immutable", "mutable"])
|
||||
@pytest.mark.parametrize("num_blocks", [1, 1024])
|
||||
@pytest.mark.parametrize("block_size", [1, 16])
|
||||
def test_free_prevents_oom(allocate_type: str, num_blocks: int,
|
||||
block_size: int):
|
||||
allocator = NaiveBlockAllocator(create_block=NaiveBlock,
|
||||
num_blocks=num_blocks,
|
||||
block_size=block_size)
|
||||
allocate_block = TestNaiveBlockAllocator.create_allocate_lambda(
|
||||
allocate_type,
|
||||
allocator,
|
||||
prev_block=None,
|
||||
token_ids=list(range(block_size)))
|
||||
|
||||
blocks = [allocate_block() for _ in range(num_blocks)]
|
||||
|
||||
with pytest.raises(BlockAllocator.NoFreeBlocksError):
|
||||
allocate_block()
|
||||
|
||||
block_to_free = blocks.pop()
|
||||
|
||||
for _ in range(100):
|
||||
block_id = block_to_free.block_id
|
||||
allocator.free(block_to_free)
|
||||
assert block_to_free.block_id is None
|
||||
|
||||
new_block = allocate_block()
|
||||
assert new_block.block_id == block_id
|
||||
|
||||
with pytest.raises(BlockAllocator.NoFreeBlocksError):
|
||||
allocate_block()
|
||||
|
||||
block_to_free = new_block
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.parametrize("allocate_type", ["immutable", "mutable"])
|
||||
@pytest.mark.parametrize("num_blocks", [1024])
|
||||
@pytest.mark.parametrize("block_size", [16])
|
||||
def test_get_num_free_blocks(allocate_type: str, num_blocks: int,
|
||||
block_size: int):
|
||||
allocator = NaiveBlockAllocator(create_block=NaiveBlock,
|
||||
num_blocks=num_blocks,
|
||||
block_size=block_size)
|
||||
allocate_block = TestNaiveBlockAllocator.create_allocate_lambda(
|
||||
allocate_type,
|
||||
allocator,
|
||||
prev_block=None,
|
||||
token_ids=list(range(block_size)))
|
||||
|
||||
assert allocator.get_num_free_blocks() == num_blocks
|
||||
|
||||
blocks = [allocate_block() for _ in range(num_blocks)]
|
||||
|
||||
for i, block in enumerate(blocks):
|
||||
assert allocator.get_num_free_blocks() == i
|
||||
allocator.free(block)
|
||||
|
||||
@staticmethod
|
||||
@pytest.mark.parametrize("num_blocks", [4])
|
||||
@pytest.mark.parametrize("block_size", [8])
|
||||
def test_naive_block_get_num_full_blocks_touched(num_blocks, block_size):
|
||||
""" Verify the allocator can correctly return the number of
|
||||
full blocks touched.
|
||||
"""
|
||||
allocator_src = NaiveBlockAllocator(create_block=NaiveBlock,
|
||||
num_blocks=num_blocks,
|
||||
block_size=block_size)
|
||||
allocator_dst = NaiveBlockAllocator(create_block=NaiveBlock,
|
||||
num_blocks=num_blocks,
|
||||
block_size=block_size)
|
||||
|
||||
# Create a chain of cacheable blocks in the dst
|
||||
allocate_block = TestNaiveBlockAllocator.create_allocate_lambda(
|
||||
"immutable",
|
||||
allocator_src,
|
||||
prev_block=None,
|
||||
token_ids=list(range(block_size)))
|
||||
src_blocks = [allocate_block() for _ in range(num_blocks - 1)]
|
||||
|
||||
# All blocks are cached
|
||||
assert allocator_dst.get_num_full_blocks_touched(
|
||||
src_blocks) == num_blocks - 1
|
||||
|
||||
# Insert one non-full block in the src
|
||||
allocate_non_full_block = \
|
||||
TestNaiveBlockAllocator.create_allocate_lambda(
|
||||
"mutable", allocator_src,
|
||||
prev_block=src_blocks[-1],token_ids=[]
|
||||
)
|
||||
src_blocks.append(allocate_non_full_block())
|
||||
src_blocks[-1].append_token_ids([0])
|
||||
|
||||
assert allocator_dst.get_num_full_blocks_touched(
|
||||
src_blocks) == num_blocks - 1
|
||||
# Fill up the last source block and then invoke
|
||||
# get_num_blocks_touched
|
||||
src_blocks[-1].append_token_ids([0] * (block_size - 1))
|
||||
assert allocator_dst.get_num_full_blocks_touched(
|
||||
src_blocks) == num_blocks
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,12 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(scope="function", autouse=True)
|
||||
def use_v0_only(monkeypatch):
|
||||
"""
|
||||
Since this module is V0 only, set VLLM_USE_V1=0 for
|
||||
all tests in the module.
|
||||
"""
|
||||
monkeypatch.setenv('VLLM_USE_V1', '0')
|
||||
@ -1,858 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
import pytest # noqa
|
||||
|
||||
from vllm.config import CacheConfig, SchedulerConfig
|
||||
from vllm.core.scheduler import Scheduler
|
||||
from vllm.engine.arg_utils import EngineArgs
|
||||
from vllm.engine.llm_engine import LLMEngine
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.sequence import Logprob, SequenceGroup
|
||||
|
||||
from .utils import create_dummy_prompt
|
||||
|
||||
|
||||
def get_sequence_groups(scheduler_output):
|
||||
return [s.seq_group for s in scheduler_output.scheduled_seq_groups]
|
||||
|
||||
|
||||
def append_new_token(seq_group: SequenceGroup, token_id: int):
|
||||
for seq in seq_group.get_seqs():
|
||||
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
|
||||
|
||||
|
||||
def schedule_and_update_computed_tokens(scheduler):
|
||||
metas, out, _ = scheduler.schedule()
|
||||
for s, meta in zip(out.scheduled_seq_groups, metas):
|
||||
s.seq_group.update_num_computed_tokens(meta.token_chunk_size)
|
||||
return metas, out
|
||||
|
||||
|
||||
def test_simple():
|
||||
"""Verify basic scheduling works."""
|
||||
block_size = 4
|
||||
num_seq_group = 4
|
||||
max_model_len = 16
|
||||
max_num_batched_tokens = 64
|
||||
scheduler_config = SchedulerConfig("generate",
|
||||
max_num_batched_tokens,
|
||||
num_seq_group,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True)
|
||||
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
||||
cache_config.num_cpu_blocks = 8
|
||||
cache_config.num_gpu_blocks = 8
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
running: list[SequenceGroup] = []
|
||||
|
||||
# Add seq groups to scheduler.
|
||||
for i in range(num_seq_group):
|
||||
_, seq_group = create_dummy_prompt(str(i),
|
||||
prompt_length=block_size,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
|
||||
# Schedule seq groups prompts.
|
||||
num_tokens = block_size * num_seq_group
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert set(get_sequence_groups(out)) == set(running)
|
||||
assert out.num_batched_tokens == num_tokens
|
||||
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
|
||||
and not out.blocks_to_swap_out)
|
||||
assert len(seq_group_meta) == num_seq_group
|
||||
for s in running:
|
||||
append_new_token(s, 1)
|
||||
|
||||
# Schedule seq groups generation.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert set(get_sequence_groups(out)) == set(running)
|
||||
assert out.num_batched_tokens == num_seq_group
|
||||
assert (not out.blocks_to_copy and not out.blocks_to_swap_in
|
||||
and not out.blocks_to_swap_out)
|
||||
assert len(seq_group_meta) == num_seq_group
|
||||
|
||||
|
||||
def test_chunk():
|
||||
"""Verify prefills are chunked properly."""
|
||||
block_size = 4
|
||||
max_seqs = 60
|
||||
max_model_len = 80
|
||||
max_num_batched_tokens = 64
|
||||
scheduler_config = SchedulerConfig(
|
||||
"generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True,
|
||||
)
|
||||
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
||||
cache_config.num_cpu_blocks = 32
|
||||
cache_config.num_gpu_blocks = 32
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
running: list[SequenceGroup] = []
|
||||
|
||||
# Add seq groups to scheduler.
|
||||
for i in range(2):
|
||||
_, seq_group = create_dummy_prompt(str(i),
|
||||
prompt_length=60,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
|
||||
# Verify the second request is chunked.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
print()
|
||||
assert set(get_sequence_groups(out)) == set(running)
|
||||
assert seq_group_meta[0].token_chunk_size == 60
|
||||
# Verify it is chunked.
|
||||
assert seq_group_meta[1].token_chunk_size == 4
|
||||
assert out.num_prefill_groups == 2
|
||||
assert out.num_batched_tokens == 64
|
||||
# Only the first seq group has a new token appended.
|
||||
append_new_token(running[0], 1)
|
||||
|
||||
# One chunked prefill, and one decoding.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert set(get_sequence_groups(out)) == set(running)
|
||||
# The first one is prefill. Scheduler guarantees ordering.
|
||||
assert seq_group_meta[0].token_chunk_size == 56
|
||||
# The second one is a chunked prefill.
|
||||
assert seq_group_meta[1].token_chunk_size == 1
|
||||
assert out.num_prefill_groups == 1
|
||||
assert out.num_batched_tokens == 57
|
||||
|
||||
|
||||
def test_concurrent_chunking():
|
||||
"""Verify prefills are chunked properly when
|
||||
--max-num-partial-prefills is > 1"""
|
||||
block_size = 4
|
||||
max_seqs = 60
|
||||
max_model_len = 2000
|
||||
max_num_batched_tokens = 64
|
||||
scheduler_config = SchedulerConfig(
|
||||
"generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True,
|
||||
max_num_partial_prefills=2, # Up to 2 partial prefills at a time
|
||||
)
|
||||
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
||||
cache_config.num_cpu_blocks = 32
|
||||
cache_config.num_gpu_blocks = 32
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
running: list[SequenceGroup] = []
|
||||
|
||||
# Add seq groups to scheduler.
|
||||
for i in range(2):
|
||||
_, seq_group = create_dummy_prompt(str(i),
|
||||
prompt_length=60,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
|
||||
# Verify both requests are chunked with half of max_num_batched_tokens each
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert set(get_sequence_groups(out)) == set(running)
|
||||
assert seq_group_meta[0].token_chunk_size == 32
|
||||
assert seq_group_meta[1].token_chunk_size == 32
|
||||
assert out.num_prefill_groups == 2
|
||||
assert out.num_batched_tokens == 64
|
||||
|
||||
# After one iteration, both should have 60 - 32 = 28 tokens left to prefill
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert set(get_sequence_groups(out)) == set(running)
|
||||
assert seq_group_meta[0].token_chunk_size == 28
|
||||
assert seq_group_meta[1].token_chunk_size == 28
|
||||
assert out.num_prefill_groups == 2
|
||||
assert out.num_batched_tokens == 56
|
||||
|
||||
|
||||
def test_concurrent_chunking_large_requests():
|
||||
"""Verify large prefill requests are run one at a time"""
|
||||
block_size = 4
|
||||
max_seqs = 60
|
||||
max_model_len = 2000
|
||||
max_num_batched_tokens = 64
|
||||
scheduler_config = SchedulerConfig(
|
||||
"generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True,
|
||||
max_num_partial_prefills=2, # Up to 2 partial prefills at a time
|
||||
)
|
||||
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
||||
cache_config.num_cpu_blocks = 3200 # large KV cache size for large requests
|
||||
cache_config.num_gpu_blocks = 3200
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
|
||||
# Add seq groups to scheduler.
|
||||
for i in range(2):
|
||||
_, seq_group = create_dummy_prompt(
|
||||
str(i),
|
||||
prompt_length=1200, # Very large prompt
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
|
||||
# Verify only a single request is chunked, and it gets all 64 tokens
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert len(get_sequence_groups(out)) == 1
|
||||
assert seq_group_meta[0].token_chunk_size == 64
|
||||
assert out.num_prefill_groups == 1
|
||||
assert out.num_batched_tokens == 64
|
||||
|
||||
|
||||
def test_short_prompts_jump_long_prompts_in_queue():
|
||||
"""Verify large prefill requests are punted behind smaller ones if
|
||||
another large prefill request is already running"""
|
||||
block_size = 4
|
||||
max_seqs = 60
|
||||
max_model_len = 2000
|
||||
max_num_batched_tokens = 64
|
||||
scheduler_config = SchedulerConfig(
|
||||
"generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True,
|
||||
max_num_partial_prefills=2, # Up to 2 partial prefills at a time
|
||||
)
|
||||
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
||||
cache_config.num_cpu_blocks = 3200 # large KV cache size for large requests
|
||||
cache_config.num_gpu_blocks = 3200
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
long_seqs: list[SequenceGroup] = []
|
||||
short_seqs: list[SequenceGroup] = []
|
||||
|
||||
# Add 2 large seq groups to scheduler.
|
||||
for i in range(2):
|
||||
_, seq_group = create_dummy_prompt(
|
||||
str(i),
|
||||
prompt_length=1200, # Very large prompt
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
long_seqs.append(seq_group)
|
||||
assert seq_group.is_prefill()
|
||||
|
||||
# Add 2 small seq groups behind them
|
||||
for i in range(2):
|
||||
_, seq_group = create_dummy_prompt(
|
||||
str(i + 2),
|
||||
prompt_length=40, # Very small prompt
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
short_seqs.append(seq_group)
|
||||
assert seq_group.is_prefill()
|
||||
|
||||
# Verify one large req and 1 small req chunked
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert seq_group_meta[0].token_chunk_size == 32 # large req gets 32 tokens
|
||||
assert seq_group_meta[1].token_chunk_size == 32 # small req gets 32 tokens
|
||||
|
||||
# all 4 are prefilling
|
||||
assert long_seqs[0].is_prefill()
|
||||
assert long_seqs[1].is_prefill()
|
||||
assert short_seqs[0].is_prefill()
|
||||
assert short_seqs[1].is_prefill()
|
||||
# First short and first long sequences have been scheduled
|
||||
assert long_seqs[0].first_seq.get_num_computed_tokens() == 32
|
||||
assert long_seqs[1].first_seq.get_num_computed_tokens() == 0
|
||||
assert short_seqs[0].first_seq.get_num_computed_tokens() == 32
|
||||
assert short_seqs[1].first_seq.get_num_computed_tokens() == 0
|
||||
|
||||
assert out.num_prefill_groups == 2
|
||||
assert out.num_batched_tokens == 64
|
||||
|
||||
# in the second iteration,
|
||||
# the first small request had only 8 tokens left
|
||||
# so it went to decode
|
||||
# The other small req is scheduled
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
# the new small req got 64 - (32+8) tokens
|
||||
assert seq_group_meta[0].token_chunk_size == 24
|
||||
assert seq_group_meta[1].token_chunk_size == 32 # large req still got 32
|
||||
# the other small request had only 8 tokens left
|
||||
assert seq_group_meta[2].token_chunk_size == 8 # 40-32
|
||||
|
||||
# The first small request got to decode now
|
||||
assert long_seqs[0].is_prefill()
|
||||
assert long_seqs[1].is_prefill()
|
||||
assert not short_seqs[0].is_prefill()
|
||||
assert short_seqs[1].is_prefill()
|
||||
# Both small requests have started in front of the second long request
|
||||
assert long_seqs[0].first_seq.get_num_computed_tokens() == 64
|
||||
assert long_seqs[1].first_seq.get_num_computed_tokens() == 0
|
||||
assert short_seqs[0].first_seq.get_num_computed_tokens() == 40
|
||||
assert short_seqs[1].first_seq.get_num_computed_tokens() == 24
|
||||
|
||||
assert out.num_prefill_groups == 3
|
||||
assert out.num_batched_tokens == 64
|
||||
# the first small seq group has a new token appended.
|
||||
append_new_token(short_seqs[0], 1)
|
||||
|
||||
# in the third iteration,
|
||||
# the first small request is already decoding
|
||||
# the second small request only has 16 tokens left and will enter decoding
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert seq_group_meta[0].token_chunk_size == 32 # large still got 32
|
||||
# small req finished prefilling 40-24=16 tokens
|
||||
assert seq_group_meta[1].token_chunk_size == 16
|
||||
assert seq_group_meta[2].token_chunk_size == 1 # decode
|
||||
assert out.num_prefill_groups == 2
|
||||
assert out.num_batched_tokens == 49 # (32+16+1 decode)
|
||||
|
||||
# both small requests have now reached decode
|
||||
assert long_seqs[0].is_prefill()
|
||||
assert long_seqs[1].is_prefill()
|
||||
assert not short_seqs[0].is_prefill()
|
||||
assert not short_seqs[1].is_prefill()
|
||||
assert long_seqs[0].first_seq.get_num_computed_tokens() == 96
|
||||
assert long_seqs[1].first_seq.get_num_computed_tokens() == 0
|
||||
assert short_seqs[0].first_seq.get_num_computed_tokens() == 41
|
||||
assert short_seqs[1].first_seq.get_num_computed_tokens() == 40
|
||||
|
||||
# both the small seq groups have a new token appended
|
||||
append_new_token(short_seqs[0], 1)
|
||||
append_new_token(short_seqs[1], 1)
|
||||
|
||||
# in the fourth iteration, both small requests are decoding
|
||||
# so large request gets all the budget
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
|
||||
# large req gets 62 tokens (minus 2 for decode)
|
||||
assert seq_group_meta[0].token_chunk_size == 62
|
||||
assert seq_group_meta[1].token_chunk_size == 1 # decode
|
||||
assert seq_group_meta[2].token_chunk_size == 1 # decode
|
||||
assert out.num_prefill_groups == 1
|
||||
assert out.num_batched_tokens == 64
|
||||
|
||||
assert long_seqs[0].first_seq.get_num_computed_tokens() == 158
|
||||
|
||||
# assert long_seqs[0].is_prefill()
|
||||
# assert long_seqs[1].is_prefill()
|
||||
# assert not short_seqs[0].is_prefill()
|
||||
# assert not short_seqs[1].is_prefill()
|
||||
|
||||
# # both the small seq groups have a new token appended
|
||||
# append_new_token(short_seqs[0], 1)
|
||||
# append_new_token(short_seqs[1], 1)
|
||||
|
||||
# # in the fifth iteration, large request gets all the budget
|
||||
# # while both small requests are decoding
|
||||
# seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
# assert seq_group_meta[0].token_chunk_size == 62
|
||||
# assert seq_group_meta[1].token_chunk_size == 1 # decode
|
||||
# assert seq_group_meta[2].token_chunk_size == 1 # decode
|
||||
# assert out.num_prefill_groups == 1
|
||||
# assert out.num_batched_tokens == 64
|
||||
|
||||
|
||||
def test_complex():
|
||||
block_size = 4
|
||||
max_seqs = 60
|
||||
max_model_len = 80
|
||||
max_num_batched_tokens = 64
|
||||
scheduler_config = SchedulerConfig(
|
||||
"generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True,
|
||||
)
|
||||
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
||||
cache_config.num_cpu_blocks = 64
|
||||
cache_config.num_gpu_blocks = 64
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
running: list[SequenceGroup] = []
|
||||
|
||||
# Add seq groups to scheduler.
|
||||
for i in range(2):
|
||||
_, seq_group = create_dummy_prompt(str(i),
|
||||
prompt_length=60,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
assert seq_group.is_prefill()
|
||||
|
||||
# Verify the second request is chunked.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
|
||||
assert set(get_sequence_groups(out)) == set(running)
|
||||
assert seq_group_meta[0].token_chunk_size == 60
|
||||
# Verify it is chunked.
|
||||
assert seq_group_meta[1].token_chunk_size == 4
|
||||
assert not running[0].is_prefill()
|
||||
assert running[1].is_prefill()
|
||||
assert out.num_prefill_groups == 2
|
||||
assert out.num_batched_tokens == 64
|
||||
# Only the first seq group has a new token appended.
|
||||
append_new_token(running[0], 1)
|
||||
|
||||
# Add 2 more requests.
|
||||
for i in range(2, 4):
|
||||
_, seq_group = create_dummy_prompt(str(i),
|
||||
prompt_length=60,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
|
||||
# Decoding & chunked prefill & first chunk of 3rd request is scheduled.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert len(get_sequence_groups(out)) == 3
|
||||
# The first one is the first chunked prefill.
|
||||
assert seq_group_meta[0].token_chunk_size == 7
|
||||
# The second one is the second new chunked prefill.
|
||||
assert seq_group_meta[1].token_chunk_size == 56
|
||||
# The last one is decode.
|
||||
assert seq_group_meta[2].token_chunk_size == 1
|
||||
# Two of them are in chunked prefill.
|
||||
assert out.num_prefill_groups == 2
|
||||
assert out.num_batched_tokens == 64
|
||||
# The first 2 requests are now in decodine phase.
|
||||
append_new_token(running[0], 1)
|
||||
assert not running[0].is_prefill()
|
||||
append_new_token(running[1], 1)
|
||||
assert not running[1].is_prefill()
|
||||
# The third request is still in prefill stage.
|
||||
assert running[2].is_prefill()
|
||||
|
||||
|
||||
def test_maximal_decoding():
|
||||
"""Verify decoding requests are prioritized."""
|
||||
block_size = 4
|
||||
max_seqs = 2
|
||||
max_model_len = 8
|
||||
max_num_batched_tokens = 2
|
||||
scheduler_config = SchedulerConfig(
|
||||
"generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True,
|
||||
)
|
||||
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
||||
cache_config.num_cpu_blocks = 8
|
||||
cache_config.num_gpu_blocks = 8
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
running: list[SequenceGroup] = []
|
||||
|
||||
# Add seq groups to scheduler.
|
||||
for i in range(2):
|
||||
_, seq_group = create_dummy_prompt(str(i),
|
||||
prompt_length=2,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
assert seq_group.is_prefill()
|
||||
|
||||
# The first prefill is scheduled.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert len(get_sequence_groups(out)) == 1
|
||||
assert seq_group_meta[0].token_chunk_size == 2
|
||||
assert not running[0].is_prefill()
|
||||
assert running[1].is_prefill()
|
||||
assert out.num_prefill_groups == 1
|
||||
assert out.num_batched_tokens == 2
|
||||
# Only the first seq group has a new token appended.
|
||||
append_new_token(running[0], 1)
|
||||
|
||||
# Create one more seq_group.
|
||||
_, seq_group = create_dummy_prompt("3",
|
||||
prompt_length=2,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
assert seq_group.is_prefill()
|
||||
# The first decoding + second chunk is scheduled.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert len(get_sequence_groups(out)) == 2
|
||||
assert seq_group_meta[0].token_chunk_size == 1
|
||||
assert seq_group_meta[1].token_chunk_size == 1
|
||||
assert not running[0].is_prefill()
|
||||
assert running[1].is_prefill()
|
||||
assert running[2].is_prefill()
|
||||
assert out.num_prefill_groups == 1
|
||||
assert out.num_batched_tokens == 2
|
||||
append_new_token(running[0], 1)
|
||||
|
||||
# Decoding + running prefill is prioritized.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert len(get_sequence_groups(out)) == 2
|
||||
assert seq_group_meta[0].token_chunk_size == 1
|
||||
assert seq_group_meta[1].token_chunk_size == 1
|
||||
assert not running[0].is_prefill()
|
||||
assert not running[1].is_prefill()
|
||||
assert out.num_prefill_groups == 1
|
||||
assert out.num_batched_tokens == 2
|
||||
append_new_token(running[0], 1)
|
||||
append_new_token(running[1], 1)
|
||||
|
||||
# Only decoding is prioritized.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert len(get_sequence_groups(out)) == 2
|
||||
assert seq_group_meta[0].token_chunk_size == 1
|
||||
assert seq_group_meta[1].token_chunk_size == 1
|
||||
assert not running[0].is_prefill()
|
||||
assert not running[1].is_prefill()
|
||||
assert out.num_prefill_groups == 0
|
||||
assert out.num_batched_tokens == 2
|
||||
append_new_token(running[0], 1)
|
||||
append_new_token(running[1], 1)
|
||||
|
||||
# After aborting the decoding request, the fcfs new prefill is prioritized.
|
||||
scheduler.abort_seq_group(running[0].request_id)
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert len(get_sequence_groups(out)) == 2
|
||||
assert seq_group_meta[0].token_chunk_size == 1
|
||||
assert seq_group_meta[1].token_chunk_size == 1
|
||||
assert not running[1].is_prefill()
|
||||
assert running[2].is_prefill()
|
||||
assert out.num_prefill_groups == 1
|
||||
assert out.num_batched_tokens == 2
|
||||
|
||||
|
||||
def test_prompt_limit():
|
||||
"""Verify max_num_batched_tokens < max_model_len is possible."""
|
||||
block_size = 4
|
||||
max_seqs = 32
|
||||
max_model_len = 64
|
||||
max_num_batched_tokens = 32
|
||||
scheduler_config = SchedulerConfig(
|
||||
"generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True,
|
||||
)
|
||||
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
||||
cache_config.num_cpu_blocks = 16
|
||||
cache_config.num_gpu_blocks = 16
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
running: list[SequenceGroup] = []
|
||||
|
||||
_, seq_group = create_dummy_prompt("1",
|
||||
prompt_length=48,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
assert seq_group.is_prefill()
|
||||
|
||||
# The prompt length > max_num_batched_tokens should be still scheduled.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert len(get_sequence_groups(out)) == 1
|
||||
assert seq_group_meta[0].token_chunk_size == 32
|
||||
assert running[0].is_prefill()
|
||||
assert out.num_prefill_groups == 1
|
||||
assert out.num_batched_tokens == 32
|
||||
|
||||
|
||||
def test_prompt_limit_exceed():
|
||||
block_size = 4
|
||||
max_seqs = 64
|
||||
max_model_len = 32
|
||||
max_num_batched_tokens = 64
|
||||
scheduler_config = SchedulerConfig("generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True)
|
||||
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
||||
cache_config.num_cpu_blocks = 16
|
||||
cache_config.num_gpu_blocks = 16
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
running: list[SequenceGroup] = []
|
||||
_, seq_group = create_dummy_prompt("2",
|
||||
prompt_length=48,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
assert seq_group.is_prefill()
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert len(out.ignored_seq_groups) == 1
|
||||
assert out.ignored_seq_groups[0] == seq_group
|
||||
|
||||
|
||||
def test_chunked_prefill_preempt():
|
||||
"""Verify preempt works with chunked prefill requests"""
|
||||
block_size = 4
|
||||
max_seqs = 30
|
||||
max_model_len = 200
|
||||
max_num_batched_tokens = 30
|
||||
scheduler_config = SchedulerConfig(
|
||||
"generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True,
|
||||
)
|
||||
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
||||
cache_config.num_cpu_blocks = 16
|
||||
cache_config.num_gpu_blocks = 16
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
|
||||
_, seq_group = create_dummy_prompt("1",
|
||||
prompt_length=60,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
_, out = schedule_and_update_computed_tokens(scheduler)
|
||||
# The request is chunked.
|
||||
# prefill scheduled now.
|
||||
assert len(out.scheduled_seq_groups) == 1
|
||||
assert out.num_prefill_groups == 1
|
||||
assert seq_group.is_prefill()
|
||||
assert out.num_batched_tokens == max_num_batched_tokens
|
||||
|
||||
# The request should be preempted.
|
||||
scheduler.block_manager.can_append_slots = MagicMock()
|
||||
|
||||
def cannot_append_second_group1(seq_group, num_lookahead_slots):
|
||||
return seq_group.request_id != "1"
|
||||
|
||||
scheduler.block_manager.can_append_slots.side_effect = (
|
||||
cannot_append_second_group1)
|
||||
|
||||
# The running prefill is now preempted.
|
||||
_, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert len(out.scheduled_seq_groups) == 0
|
||||
assert out.num_batched_tokens == 0
|
||||
assert out.blocks_to_swap_out == []
|
||||
assert out.blocks_to_swap_in == []
|
||||
|
||||
# Make sure we can reschedule preempted request.
|
||||
_, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert len(out.scheduled_seq_groups) == 1
|
||||
assert out.num_prefill_groups == 1
|
||||
assert seq_group.is_prefill()
|
||||
assert out.num_batched_tokens == max_num_batched_tokens
|
||||
assert seq_group.get_num_uncomputed_tokens() == 30
|
||||
|
||||
# We should be able to run prefill twice as it is chunked.
|
||||
def cannot_append_second_group2(seq_group, num_lookahead_slots):
|
||||
return True
|
||||
|
||||
scheduler.block_manager.can_append_slots.side_effect = (
|
||||
cannot_append_second_group2)
|
||||
_, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert len(out.scheduled_seq_groups) == 1
|
||||
assert out.num_prefill_groups == 1
|
||||
assert not seq_group.is_prefill()
|
||||
assert out.num_batched_tokens == max_num_batched_tokens
|
||||
|
||||
|
||||
def test_chunked_prefill_spec_prefill():
|
||||
"""Verify that the num_lookahead_slots is set appropriately for an all"""
|
||||
"""prefill batch."""
|
||||
block_size = 4
|
||||
max_seqs = 30
|
||||
max_model_len = 200
|
||||
max_num_batched_tokens = 30
|
||||
num_lookahead_slots = 4
|
||||
scheduler_config = SchedulerConfig(
|
||||
"generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True,
|
||||
num_lookahead_slots=num_lookahead_slots,
|
||||
)
|
||||
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
||||
cache_config.num_cpu_blocks = 16
|
||||
cache_config.num_gpu_blocks = 16
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
|
||||
_, seq_group = create_dummy_prompt("1",
|
||||
prompt_length=30,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
_, out = schedule_and_update_computed_tokens(scheduler)
|
||||
# The request is chunked.
|
||||
# prefill scheduled now.
|
||||
assert len(out.scheduled_seq_groups) == 1
|
||||
assert out.num_prefill_groups == 1
|
||||
assert out.num_batched_tokens == max_num_batched_tokens
|
||||
print(out.num_lookahead_slots)
|
||||
assert out.num_lookahead_slots == 0
|
||||
|
||||
|
||||
def test_chunked_prefill_max_seqs():
|
||||
block_size = 4
|
||||
max_seqs = 2
|
||||
max_model_len = 80
|
||||
max_num_batched_tokens = 64
|
||||
scheduler_config = SchedulerConfig(
|
||||
"generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True,
|
||||
)
|
||||
cache_config = CacheConfig(block_size, 1.0, 1, "auto")
|
||||
cache_config.num_cpu_blocks = 128
|
||||
cache_config.num_gpu_blocks = 128
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
running: list[SequenceGroup] = []
|
||||
|
||||
_, seq_group = create_dummy_prompt("1",
|
||||
prompt_length=65,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
# The first prefill is chunked.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert seq_group_meta[0].token_chunk_size == max_num_batched_tokens
|
||||
assert len(get_sequence_groups(out)) == 1
|
||||
|
||||
# Add new requests.
|
||||
for i in range(4):
|
||||
_, seq_group = create_dummy_prompt(str(i),
|
||||
prompt_length=65,
|
||||
block_size=block_size)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
|
||||
# Make sure only 2 requests are scheduled.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert out.num_batched_tokens == max_num_batched_tokens
|
||||
assert len(get_sequence_groups(out)) == 2
|
||||
assert not running[0].is_prefill()
|
||||
assert running[1].is_prefill()
|
||||
append_new_token(running[0], 1)
|
||||
|
||||
# Although we have enough token budget, we can only schedule max_seqs.
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert seq_group_meta[0].token_chunk_size == 2
|
||||
assert seq_group_meta[1].token_chunk_size == 1
|
||||
assert out.num_batched_tokens == 3
|
||||
assert len(get_sequence_groups(out)) == max_seqs
|
||||
assert not running[0].is_prefill()
|
||||
assert not running[1].is_prefill()
|
||||
|
||||
|
||||
def test_prefix_caching():
|
||||
"""Verify allocating full blocks when prefix caching is enabled."""
|
||||
block_size = 4
|
||||
max_seqs = 10
|
||||
max_model_len = 80
|
||||
max_num_batched_tokens = 64
|
||||
scheduler_config = SchedulerConfig(
|
||||
"generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True,
|
||||
)
|
||||
cache_config = CacheConfig(block_size,
|
||||
1.0,
|
||||
1,
|
||||
"auto",
|
||||
enable_prefix_caching=True)
|
||||
cache_config.num_cpu_blocks = 0
|
||||
cache_config.num_gpu_blocks = 32
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
running: list[SequenceGroup] = []
|
||||
|
||||
# Add seq groups to scheduler.
|
||||
for i in range(2):
|
||||
_, seq_group = create_dummy_prompt(str(i),
|
||||
block_size=block_size,
|
||||
prompt_length=50)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert set(get_sequence_groups(out)) == set(running)
|
||||
assert seq_group_meta[0].token_chunk_size == 50
|
||||
# Verify it is chunked. Note that although the budget is 64-50=14,
|
||||
# we only allocate full blocks for prefix caching, so only 4*(14//4)=12
|
||||
# tokens are allocated.
|
||||
assert seq_group_meta[1].token_chunk_size == 12
|
||||
assert out.num_prefill_groups == 2
|
||||
assert out.num_batched_tokens == 62
|
||||
|
||||
|
||||
def test_prefix_caching_with_concurrent_partial_prefills():
|
||||
"""Verify allocating full blocks when prefix caching is enabled with
|
||||
--max-num-partial-prefills > 1."""
|
||||
block_size = 4
|
||||
max_seqs = 10
|
||||
max_model_len = 8000
|
||||
max_num_batched_tokens = 60 # With two slots, each slot will get 30 tokens
|
||||
scheduler_config = SchedulerConfig("generate",
|
||||
max_num_batched_tokens,
|
||||
max_seqs,
|
||||
max_model_len,
|
||||
enable_chunked_prefill=True,
|
||||
max_num_partial_prefills=2)
|
||||
cache_config = CacheConfig(block_size,
|
||||
1.0,
|
||||
1,
|
||||
"auto",
|
||||
enable_prefix_caching=True)
|
||||
cache_config.num_cpu_blocks = 0
|
||||
cache_config.num_gpu_blocks = 32
|
||||
scheduler = Scheduler(scheduler_config, cache_config, None)
|
||||
running: list[SequenceGroup] = []
|
||||
|
||||
# Add seq groups to scheduler.
|
||||
for i in range(2):
|
||||
_, seq_group = create_dummy_prompt(str(i),
|
||||
block_size=block_size,
|
||||
prompt_length=50)
|
||||
scheduler.add_seq_group(seq_group)
|
||||
running.append(seq_group)
|
||||
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert set(get_sequence_groups(out)) == set(running)
|
||||
# To partially prefill both sequences, both can chunk up to 30 tokens
|
||||
# But the next lowest multiple of the block size (4) is 28
|
||||
assert seq_group_meta[0].token_chunk_size == 28
|
||||
assert seq_group_meta[1].token_chunk_size == 28
|
||||
assert out.num_prefill_groups == 2
|
||||
assert out.num_batched_tokens == 56
|
||||
|
||||
# On the next iteration, both sequences should finish prefill
|
||||
seq_group_meta, out = schedule_and_update_computed_tokens(scheduler)
|
||||
assert set(get_sequence_groups(out)) == set(running)
|
||||
# Both sequences have 50 - 28 = 22 tokens left to prefill.
|
||||
# This is not a multiple of the block size, but we don't care since we don't
|
||||
# cache the final partial block of prefix sequences
|
||||
assert seq_group_meta[0].token_chunk_size == 22
|
||||
assert seq_group_meta[1].token_chunk_size == 22
|
||||
assert out.num_prefill_groups == 2
|
||||
assert out.num_batched_tokens == 44
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model", ["facebook/opt-125m"])
|
||||
@pytest.mark.parametrize("max_num_partial_prefills", [2, 4, 8])
|
||||
def test_chunked_prefill_with_actual_engine(model: str,
|
||||
max_num_partial_prefills: int):
|
||||
"""Make sure the model can actually sample with concurrent
|
||||
partial prefills
|
||||
"""
|
||||
|
||||
prompt = "hello" * 40
|
||||
|
||||
engine_args = EngineArgs(
|
||||
model=model,
|
||||
max_num_partial_prefills=max_num_partial_prefills,
|
||||
max_num_batched_tokens=40,
|
||||
max_num_seqs=8,
|
||||
enable_chunked_prefill=True,
|
||||
gpu_memory_utilization=0.8,
|
||||
)
|
||||
|
||||
engine = LLMEngine.from_engine_args(engine_args)
|
||||
sampling_params = SamplingParams(temperature=0)
|
||||
|
||||
for req_num in range(max_num_partial_prefills):
|
||||
engine.add_request(f"{req_num}", prompt, sampling_params)
|
||||
# first step
|
||||
request_outputs = engine.step()
|
||||
# means all are prefilling
|
||||
assert len(request_outputs) == 0
|
||||
assert len(engine.scheduler[0].running) == max_num_partial_prefills
|
||||
@ -1,67 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import pytest
|
||||
|
||||
from tests.conftest import VllmRunner
|
||||
from tests.core.utils import create_dummy_prompt
|
||||
from vllm.engine.llm_engine import LLMEngine
|
||||
from vllm.sequence import SequenceGroup
|
||||
|
||||
MODEL = "JackFram/llama-160m"
|
||||
|
||||
|
||||
def add_seq_group_to_engine(engine: LLMEngine, seq_group: SequenceGroup):
|
||||
scheduler = engine.scheduler[0]
|
||||
scheduler.add_seq_group(seq_group)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("enable_chunked_prefill", [False, True])
|
||||
@pytest.mark.parametrize("enforce_eager", [False, True])
|
||||
def test_num_computed_tokens_update(enable_chunked_prefill: bool,
|
||||
enforce_eager: bool):
|
||||
|
||||
# Make a vllm engine
|
||||
runner = VllmRunner(model_name=MODEL,
|
||||
gpu_memory_utilization=0.7,
|
||||
enable_chunked_prefill=enable_chunked_prefill,
|
||||
enforce_eager=enforce_eager)
|
||||
engine: LLMEngine = runner.llm.llm_engine
|
||||
|
||||
num_prompt_steps = 1
|
||||
|
||||
num_output_tokens_list = [4, 8, 12, 15, 16, 17]
|
||||
|
||||
# Create sequence and add to engine
|
||||
prompt_len = 10
|
||||
|
||||
for req_idx, num_output_tokens in enumerate(num_output_tokens_list):
|
||||
seq, seq_group = create_dummy_prompt(request_id=str(req_idx),
|
||||
prompt_length=prompt_len,
|
||||
min_tokens=num_output_tokens,
|
||||
max_tokens=num_output_tokens)
|
||||
add_seq_group_to_engine(engine, seq_group)
|
||||
|
||||
assert seq.data.get_num_computed_tokens() == 0
|
||||
|
||||
for _ in range(num_prompt_steps):
|
||||
# prompt steps
|
||||
engine.step()
|
||||
|
||||
if not seq.is_finished():
|
||||
prompt_num_computed_tokens = seq.data.get_num_computed_tokens()
|
||||
# Test correctness of num_computed_tokens after the prompt steps
|
||||
assert prompt_num_computed_tokens == \
|
||||
prompt_len + num_prompt_steps - 1
|
||||
|
||||
decode_step_counter = 0
|
||||
while not seq.is_finished():
|
||||
# Test correctness of num_computed_tokens after the decode steps
|
||||
assert seq.data.get_num_computed_tokens(
|
||||
) == prompt_num_computed_tokens + decode_step_counter
|
||||
engine.step()
|
||||
decode_step_counter += 1
|
||||
|
||||
# Test correctness of num_computed_tokens after the sequence finish.
|
||||
assert seq.data.get_num_computed_tokens(
|
||||
) == prompt_len + num_output_tokens - 1
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,36 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import msgspec
|
||||
|
||||
from vllm.executor.msgspec_utils import decode_hook, encode_hook
|
||||
from vllm.sequence import ExecuteModelRequest
|
||||
|
||||
from .utils import create_batch
|
||||
|
||||
|
||||
def test_msgspec_serialization():
|
||||
num_lookahead_slots = 4
|
||||
seq_group_metadata_list, _, _ = create_batch(16, num_lookahead_slots)
|
||||
execute_model_req = ExecuteModelRequest(
|
||||
seq_group_metadata_list=seq_group_metadata_list,
|
||||
num_lookahead_slots=num_lookahead_slots,
|
||||
running_queue_size=4)
|
||||
|
||||
encoder = msgspec.msgpack.Encoder(enc_hook=encode_hook)
|
||||
decoder = msgspec.msgpack.Decoder(ExecuteModelRequest,
|
||||
dec_hook=decode_hook)
|
||||
req = decoder.decode(encoder.encode(execute_model_req))
|
||||
expected = execute_model_req.seq_group_metadata_list
|
||||
actual = req.seq_group_metadata_list
|
||||
assert (len(expected) == len(actual))
|
||||
expected = expected[0]
|
||||
actual = actual[0]
|
||||
|
||||
assert expected.block_tables == actual.block_tables
|
||||
assert expected.is_prompt == actual.is_prompt
|
||||
assert expected.request_id == actual.request_id
|
||||
assert (expected.seq_data[0].prompt_token_ids ==
|
||||
actual.seq_data[0].prompt_token_ids)
|
||||
assert (expected.seq_data[0].output_token_ids ==
|
||||
actual.seq_data[0].output_token_ids)
|
||||
@ -1,392 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from collections.abc import Sequence as GenericSequence
|
||||
from itertools import count
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
import torch
|
||||
|
||||
from vllm.core.scheduler import Scheduler, SchedulerOutputs
|
||||
from vllm.inputs import EncoderDecoderInputs, embeds_inputs, token_inputs
|
||||
from vllm.lora.request import LoRARequest
|
||||
from vllm.sampling_params import SamplingParams
|
||||
from vllm.sequence import (Logprob, Sequence, SequenceData, SequenceGroup,
|
||||
SequenceGroupMetadata)
|
||||
|
||||
|
||||
def create_dummy_prompt(
|
||||
request_id: str,
|
||||
prompt_length: int = -1,
|
||||
block_size: Optional[int] = None,
|
||||
lora_request: Optional[LoRARequest] = None,
|
||||
prompt_tokens: Optional[list[int]] = None,
|
||||
prompt_embeds: Optional[torch.Tensor] = None,
|
||||
min_tokens: int = 0,
|
||||
max_tokens: int = 16,
|
||||
) -> tuple[Sequence, SequenceGroup]:
|
||||
if not block_size:
|
||||
block_size = prompt_length
|
||||
|
||||
if prompt_tokens is None:
|
||||
# Create dummy prompt sequence with tokens 0...block_size-1
|
||||
# and prompt "0 ... block_size".
|
||||
prompt_tokens = list(range(prompt_length))
|
||||
|
||||
prompt_str = " ".join([str(t) for t in prompt_tokens])
|
||||
inputs = token_inputs(
|
||||
prompt_token_ids=prompt_tokens,
|
||||
prompt=prompt_str) if prompt_embeds is None else embeds_inputs(
|
||||
prompt_embeds=prompt_embeds)
|
||||
prompt = Sequence(
|
||||
int(request_id),
|
||||
inputs=inputs,
|
||||
block_size=block_size,
|
||||
)
|
||||
seq_group = SequenceGroup(
|
||||
request_id=request_id,
|
||||
seqs=[prompt],
|
||||
arrival_time=time.time(),
|
||||
sampling_params=SamplingParams(max_tokens=max_tokens,
|
||||
min_tokens=min_tokens),
|
||||
lora_request=lora_request,
|
||||
)
|
||||
|
||||
return prompt, seq_group
|
||||
|
||||
|
||||
def create_dummy_lora_sequence(request_id: int, token_ids: list[int],
|
||||
block_size: int, lora_int_id: int) -> Sequence:
|
||||
return Sequence(seq_id=request_id,
|
||||
inputs=token_inputs(token_ids),
|
||||
block_size=block_size,
|
||||
lora_request=LoRARequest(lora_name="dummy",
|
||||
lora_path="/dummy",
|
||||
lora_int_id=lora_int_id))
|
||||
|
||||
|
||||
def create_dummy_sequence(request_id: int, token_ids: list[int],
|
||||
block_size: int) -> Sequence:
|
||||
return Sequence(
|
||||
seq_id=request_id,
|
||||
inputs=token_inputs(token_ids),
|
||||
block_size=block_size,
|
||||
)
|
||||
|
||||
|
||||
def create_dummy_prompt_encoder_decoder(
|
||||
request_id: str,
|
||||
decoder_prompt_length: int,
|
||||
encoder_prompt_length: int,
|
||||
block_size: Optional[int] = None,
|
||||
lora_request: Optional[LoRARequest] = None,
|
||||
) -> tuple[Sequence, Sequence, SequenceGroup]:
|
||||
if not block_size:
|
||||
block_size = decoder_prompt_length
|
||||
|
||||
# Create dummy prompt sequence with tokens 0...block_size-1
|
||||
# and prompt "0 ... block_size". Note that the prompt string
|
||||
# doesn't actually match the tokens
|
||||
decoder_prompt_tokens = list(range(decoder_prompt_length))
|
||||
decoder_prompt_str = " ".join([str(t) for t in decoder_prompt_tokens])
|
||||
encoder_prompt_tokens = list(reversed(list(range(encoder_prompt_length))))
|
||||
encoder_prompt_str = " ".join([str(t) for t in encoder_prompt_tokens])
|
||||
|
||||
inputs: EncoderDecoderInputs = {
|
||||
"decoder": token_inputs(decoder_prompt_tokens,
|
||||
prompt=decoder_prompt_str),
|
||||
"encoder": token_inputs(encoder_prompt_tokens,
|
||||
prompt=encoder_prompt_str),
|
||||
}
|
||||
|
||||
decoder_prompt = Sequence(int(request_id),
|
||||
inputs=inputs["decoder"],
|
||||
block_size=block_size)
|
||||
|
||||
encoder_prompt = Sequence(int(request_id),
|
||||
inputs=inputs["encoder"],
|
||||
block_size=block_size)
|
||||
|
||||
seq_group = SequenceGroup(request_id=request_id,
|
||||
seqs=[decoder_prompt],
|
||||
arrival_time=time.time(),
|
||||
lora_request=lora_request,
|
||||
encoder_seq=encoder_prompt)
|
||||
|
||||
return decoder_prompt, encoder_prompt, seq_group
|
||||
|
||||
|
||||
def create_seq_group(
|
||||
seq_prompt_len: int = 1024,
|
||||
seq_output_lens: GenericSequence[int] = (128, ),
|
||||
request_id: str = '0',
|
||||
seq_id_start: int = 0,
|
||||
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
|
||||
|
||||
assert len(seq_output_lens) > 0
|
||||
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
||||
prompt_token_ids = [0] * seq_prompt_len
|
||||
|
||||
seqs: list[Sequence] = []
|
||||
for seq_id_offset, output_len in enumerate(seq_output_lens):
|
||||
seq = Sequence(
|
||||
seq_id=seq_id_start + seq_id_offset,
|
||||
inputs=token_inputs(prompt_token_ids),
|
||||
block_size=16,
|
||||
)
|
||||
|
||||
for i in range(output_len):
|
||||
seq.append_token_id(
|
||||
token_id=i,
|
||||
logprobs={i: Logprob(0.0)},
|
||||
)
|
||||
seqs.append(seq)
|
||||
|
||||
seq_group = SequenceGroup(
|
||||
request_id=request_id,
|
||||
seqs=seqs,
|
||||
sampling_params=sampling_params,
|
||||
arrival_time=time.time(),
|
||||
)
|
||||
|
||||
return seq_group
|
||||
|
||||
|
||||
def create_seq_group_encoder_decoder(
|
||||
seq_prompt_len: int = 1024,
|
||||
seq_output_lens: GenericSequence[int] = (128, ),
|
||||
request_id: str = '0',
|
||||
seq_id_start: int = 0,
|
||||
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
|
||||
|
||||
assert len(seq_output_lens) > 0
|
||||
|
||||
if sampling_params is None:
|
||||
sampling_params = SamplingParams()
|
||||
|
||||
prompt_token_ids = [0] * seq_prompt_len
|
||||
|
||||
inputs: EncoderDecoderInputs = {
|
||||
"decoder": token_inputs(prompt_token_ids),
|
||||
"encoder": token_inputs(prompt_token_ids),
|
||||
}
|
||||
|
||||
seqs = []
|
||||
for seq_id_offset, output_len in enumerate(seq_output_lens):
|
||||
# Construct decoder input sequences
|
||||
seq = Sequence(
|
||||
seq_id=seq_id_start + seq_id_offset,
|
||||
inputs=inputs["decoder"],
|
||||
block_size=16,
|
||||
)
|
||||
|
||||
for i in range(output_len):
|
||||
seq.append_token_id(
|
||||
token_id=i,
|
||||
logprobs={i: Logprob(0.0)},
|
||||
)
|
||||
seqs.append(seq)
|
||||
|
||||
# Encoder input sequence
|
||||
encoder_seq = Sequence(
|
||||
seq_id=seq_id_start + len(seq_output_lens),
|
||||
inputs=inputs["encoder"],
|
||||
block_size=16,
|
||||
)
|
||||
|
||||
return SequenceGroup(request_id=request_id,
|
||||
seqs=seqs,
|
||||
sampling_params=sampling_params,
|
||||
arrival_time=time.time(),
|
||||
encoder_seq=encoder_seq)
|
||||
|
||||
|
||||
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
|
||||
return (seq_len + block_size - 1) // block_size
|
||||
|
||||
|
||||
# Helper functions for scheduler tests
|
||||
|
||||
|
||||
def get_sequence_groups(scheduler_output):
|
||||
return [s.seq_group for s in scheduler_output.scheduled_seq_groups]
|
||||
|
||||
|
||||
def append_new_token(out, token_id: int):
|
||||
seq_groups = get_sequence_groups(out)
|
||||
for seq_group in seq_groups:
|
||||
for seq in seq_group.get_seqs():
|
||||
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
|
||||
|
||||
|
||||
def schedule_and_update_computed_tokens(scheduler):
|
||||
metas, out, _ = scheduler.schedule()
|
||||
for s in out.scheduled_seq_groups:
|
||||
s.seq_group.update_num_computed_tokens(s.token_chunk_size)
|
||||
return metas, out
|
||||
|
||||
|
||||
def append_new_token_seq(seq: Sequence, token_id: int):
|
||||
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
|
||||
|
||||
|
||||
def append_new_token_seq_group(token_chunk_size, seq_group, token_id: int):
|
||||
seq_group.update_num_computed_tokens(token_chunk_size)
|
||||
for seq in seq_group.get_seqs():
|
||||
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
|
||||
|
||||
|
||||
class SchedulerProxy:
|
||||
"""
|
||||
A proxy class to forward calls to the scheduler.
|
||||
"""
|
||||
|
||||
def __init__(self, scheduler: Scheduler):
|
||||
self.scheduler_ = scheduler
|
||||
self.call_history: dict[str, list[Any]] = defaultdict(list)
|
||||
|
||||
def __getattr__(self, name: str) -> Any:
|
||||
|
||||
def wrapper(*args, **kwargs):
|
||||
result = getattr(self.scheduler_, name)(*args, **kwargs)
|
||||
self.call_history[name].append((args, kwargs, result))
|
||||
return result
|
||||
|
||||
return wrapper
|
||||
|
||||
def last_schedule_ret(
|
||||
self, ) -> tuple[list[SequenceGroupMetadata], SchedulerOutputs, Any]:
|
||||
_, _, ret = self.call_history["schedule"][-1]
|
||||
return ret
|
||||
|
||||
|
||||
def create_seq_group_metadata_from_prompts(
|
||||
prompts: list[list[int]],
|
||||
num_gpu_blocks: int,
|
||||
block_size: int,
|
||||
final_prompt_lens: list[int],
|
||||
continuations: Optional[list[list[int]]] = None,
|
||||
seq_ids: Optional[list[int]] = None,
|
||||
) -> list[SequenceGroupMetadata]:
|
||||
|
||||
if continuations is None:
|
||||
continuations = [[] for _ in prompts]
|
||||
|
||||
if seq_ids is None:
|
||||
seq_ids = list(i for i, _ in enumerate(prompts))
|
||||
|
||||
free_gpu_blocks = list(range(num_gpu_blocks))
|
||||
|
||||
block_allocations = {
|
||||
i: [
|
||||
free_gpu_blocks.pop()
|
||||
for _ in range(round_up_to_next_block(final_len, block_size))
|
||||
]
|
||||
for i, final_len in enumerate(final_prompt_lens)
|
||||
}
|
||||
|
||||
seq_grou_metadata_list = []
|
||||
for i, (prompt_token_ids,
|
||||
cont_token_ids) in enumerate(zip(prompts, continuations)):
|
||||
data = SequenceData.from_seqs(prompt_token_ids, cont_token_ids)
|
||||
data.update_num_computed_tokens(
|
||||
len(prompt_token_ids) + len(cont_token_ids) - 1)
|
||||
seq_data = {i: data}
|
||||
seq_grou_metadata_list.append(
|
||||
SequenceGroupMetadata(
|
||||
request_id=str(i),
|
||||
is_prompt=len(cont_token_ids) == 0,
|
||||
seq_data=seq_data,
|
||||
sampling_params=SamplingParams(temperature=0.0),
|
||||
block_tables={i: block_allocations[i][:]},
|
||||
))
|
||||
return seq_grou_metadata_list
|
||||
|
||||
|
||||
def create_chunked_seq_group_metadata_from_prompt(
|
||||
prompt: list[int],
|
||||
num_gpu_blocks: int,
|
||||
chunk_size: int,
|
||||
block_size: int,
|
||||
seq_id: Optional[int] = None) -> list[SequenceGroupMetadata]:
|
||||
|
||||
if seq_id is None:
|
||||
seq_id = 0
|
||||
|
||||
free_gpu_blocks = list(range(num_gpu_blocks))
|
||||
|
||||
block_allocations = [
|
||||
free_gpu_blocks.pop()
|
||||
for _ in range(round_up_to_next_block(len(prompt), block_size))
|
||||
]
|
||||
|
||||
seq_group_metadata_list = []
|
||||
for i, idx in enumerate(range(0, len(prompt), chunk_size)):
|
||||
chunk_ids = prompt[idx:idx + chunk_size]
|
||||
data = SequenceData.from_seqs(prompt)
|
||||
data.update_num_computed_tokens(idx)
|
||||
seq_data = {i: data}
|
||||
seq_group_metadata_list.append(
|
||||
SequenceGroupMetadata(
|
||||
request_id=str(seq_id),
|
||||
is_prompt=True,
|
||||
do_sample=idx + chunk_size >= len(prompt), # terminal chunk
|
||||
seq_data=seq_data,
|
||||
sampling_params=SamplingParams(temperature=0.0),
|
||||
block_tables={i: block_allocations},
|
||||
token_chunk_size=len(chunk_ids)))
|
||||
return seq_group_metadata_list
|
||||
|
||||
|
||||
def create_batch(batch_size,
|
||||
k,
|
||||
prompt_len: Union[int, list[int]] = 10,
|
||||
prev_output_token_len: int = 10,
|
||||
seq_ids: Optional[list[int]] = None,
|
||||
num_gpu_blocks: Optional[int] = None,
|
||||
block_size: Optional[int] = None,
|
||||
prefill_chunk_size: Optional[int] = None):
|
||||
if block_size is None:
|
||||
block_size = 8
|
||||
|
||||
if num_gpu_blocks is None:
|
||||
num_gpu_blocks = 2048 // block_size
|
||||
|
||||
iterator = count()
|
||||
|
||||
if isinstance(prompt_len, int):
|
||||
prompt_lens = [prompt_len for _ in range(batch_size)]
|
||||
else:
|
||||
prompt_lens = prompt_len
|
||||
|
||||
prompts = [[next(iterator) for _ in range(p_len)] for p_len in prompt_lens]
|
||||
|
||||
if prefill_chunk_size:
|
||||
# Create a batch of chunked prompts.
|
||||
if not seq_ids:
|
||||
seq_ids = list(range(len(prompts)))
|
||||
seq_group_metadata_list = []
|
||||
for p, sid in zip(prompts, seq_ids):
|
||||
seq_group_metadata_list += \
|
||||
create_chunked_seq_group_metadata_from_prompt(
|
||||
p, num_gpu_blocks, prefill_chunk_size, block_size, sid)
|
||||
seq_group_metadata_list = seq_group_metadata_list[:batch_size]
|
||||
prev_output_tokens = []
|
||||
else:
|
||||
prev_output_tokens = [[
|
||||
next(iterator) for _ in range(prev_output_token_len)
|
||||
] for _ in range(batch_size)]
|
||||
final_prompt_lens = [
|
||||
len(prompt) + len(prev_output_token) + k + 1
|
||||
for prompt, prev_output_token in zip(prompts, prev_output_tokens)
|
||||
]
|
||||
|
||||
seq_group_metadata_list = create_seq_group_metadata_from_prompts(
|
||||
prompts, num_gpu_blocks, block_size, final_prompt_lens,
|
||||
prev_output_tokens, seq_ids)
|
||||
return seq_group_metadata_list, prompts, prev_output_tokens
|
||||
Loading…
x
Reference in New Issue
Block a user