mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 21:35:01 +08:00
[Speculative decoding] Initial spec decode docs (#5400)
This commit is contained in:
parent
246598a6b1
commit
4c2ffb28ff
@ -90,6 +90,7 @@ Documentation
|
||||
models/engine_args
|
||||
models/lora
|
||||
models/vlm
|
||||
models/spec_decode
|
||||
models/performance
|
||||
|
||||
.. toctree::
|
||||
|
||||
75
docs/source/models/spec_decode.rst
Normal file
75
docs/source/models/spec_decode.rst
Normal file
@ -0,0 +1,75 @@
|
||||
.. _spec_decode:
|
||||
|
||||
Speculative decoding in vLLM
|
||||
============================
|
||||
|
||||
.. warning::
|
||||
Please note that speculative decoding in vLLM is not yet optimized and does
|
||||
not usually yield inter-token latency reductions for all prompt datasets or sampling parameters. The work
|
||||
to optimize it is ongoing and can be followed in `this issue. <https://github.com/vllm-project/vllm/issues/4630>`_
|
||||
|
||||
This document shows how to use `Speculative Decoding <https://x.com/karpathy/status/1697318534555336961>`_ with vLLM.
|
||||
Speculative decoding is a technique which improves inter-token latency in memory-bound LLM inference.
|
||||
|
||||
Speculating with a draft model
|
||||
------------------------------
|
||||
|
||||
The following code configures vLLM to use speculative decoding with a draft model, speculating 5 tokens at a time.
|
||||
|
||||
.. code-block:: python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
prompts = [
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
llm = LLM(
|
||||
model="facebook/opt-6.7b",
|
||||
tensor_parallel_size=1,
|
||||
speculative_model="facebook/opt-125m",
|
||||
num_speculative_tokens=5,
|
||||
use_v2_block_manager=True,
|
||||
)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
Speculating by matching n-grams in the prompt
|
||||
---------------------------------------------
|
||||
|
||||
The following code configures vLLM to use speculative decoding where proposals are generated by
|
||||
matching n-grams in the prompt. For more information read `this thread. <https://x.com/joao_gante/status/1747322413006643259>`_
|
||||
|
||||
.. code-block:: python
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
prompts = [
|
||||
"The future of AI is",
|
||||
]
|
||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||
|
||||
llm = LLM(
|
||||
model="facebook/opt-6.7b",
|
||||
tensor_parallel_size=1,
|
||||
speculative_model="[ngram]",
|
||||
num_speculative_tokens=5,
|
||||
ngram_prompt_lookup_max=4,
|
||||
use_v2_block_manager=True,
|
||||
)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
|
||||
for output in outputs:
|
||||
prompt = output.prompt
|
||||
generated_text = output.outputs[0].text
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
Resources for vLLM contributors
|
||||
-------------------------------
|
||||
* `A Hacker's Guide to Speculative Decoding in vLLM <https://www.youtube.com/watch?v=9wNAgpX6z_4>`_
|
||||
* `What is Lookahead Scheduling in vLLM? <https://docs.google.com/document/d/1Z9TvqzzBPnh5WHcRwjvK2UEeFeq5zMZb5mFE8jR0HCs/edit#heading=h.1fjfb0donq5a>`_
|
||||
* `Information on batch expansion. <https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8>`_
|
||||
* `Dynamic speculative decoding <https://github.com/vllm-project/vllm/issues/4565>`_
|
||||
Loading…
x
Reference in New Issue
Block a user