[V1][Kernel] Flashinfer HND KV cache layout (#19280)

Signed-off-by: NickLucche <nlucches@redhat.com>
This commit is contained in:
Nicolò Lucchesi 2025-06-17 15:09:22 +02:00 committed by GitHub
parent 93aee29fdb
commit 4c8f64faa7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 64 additions and 20 deletions

View File

@ -2,7 +2,6 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import dataclasses
import os
from collections import defaultdict
from contextlib import contextmanager
from dataclasses import dataclass
@ -50,8 +49,7 @@ if TYPE_CHECKING:
from vllm.worker.model_runner import (ModelInputForGPUBuilder,
ModelInputForGPUWithSamplingMetadata)
FLASHINFER_KV_CACHE_LAYOUT: str = os.getenv("FLASHINFER_KV_CACHE_LAYOUT",
"NHD").upper()
FLASHINFER_KV_CACHE_LAYOUT: str = envs.VLLM_KV_CACHE_LAYOUT or "NHD"
class FlashInferBackend(AttentionBackend):

View File

@ -3,7 +3,6 @@
"""
KV cache helper for store.
"""
import torch
import vllm.envs as envs
@ -94,15 +93,17 @@ class model_aware_kv_ops_helper:
def get_kv_connector_cache_layout():
# NOTE (NickLucche) When running disaggregated PD with NIXL, HND layout is
# used for faster transfer.
vllm_config = get_current_vllm_config()
kv_config = vllm_config.kv_transfer_config
if vllm_config.model_config is None:
logger.warning("Unable to detect current VLLM config. " \
if vllm_config.model_config is None or kv_config is None:
logger.warning_once("Unable to detect current VLLM config. " \
"Defaulting to NHD kv cache layout.")
else:
use_mla = vllm_config.model_config.use_mla
if not use_mla and kv_config.kv_connector == "NixlConnector":
logger.info("NixlConnector detected. Setting KV cache " \
logger.info_once("NixlConnector detected. Setting KV cache " \
"layout to HND for better xfer performance.")
return "HND"
return "NHD"

View File

@ -128,6 +128,7 @@ if TYPE_CHECKING:
VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS: int = 1
VLLM_SLEEP_WHEN_IDLE: bool = False
VLLM_MQ_MAX_CHUNK_BYTES_MB: int = 16
VLLM_KV_CACHE_LAYOUT: Optional[str] = None
def get_default_cache_root():
@ -879,6 +880,16 @@ environment_variables: dict[str, Callable[[], Any]] = {
# processes via zmq.
"VLLM_MQ_MAX_CHUNK_BYTES_MB":
lambda: int(os.getenv("VLLM_MQ_MAX_CHUNK_BYTES_MB", "16")),
# KV Cache layout used throughout vllm.
# Some common values are:
# - NHD
# - HND
# Where N=num_blocks, H=num_heads and D=head_size. The default value will
# leave the layout choice to the backend. Mind that backends may only
# implement and support a subset of all possible layouts.
"VLLM_KV_CACHE_LAYOUT":
lambda: os.getenv("VLLM_KV_CACHE_LAYOUT", None)
}
# --8<-- [end:env-vars-definition]

View File

@ -16,13 +16,12 @@ from vllm.attention.ops.merge_attn_states import merge_attn_states
from vllm.attention.utils.fa_utils import (flash_attn_supports_fp8,
get_flash_attn_version)
from vllm.config import VllmConfig, get_layers_from_vllm_config
from vllm.distributed.kv_transfer.kv_connector.utils import (
get_kv_connector_cache_layout)
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.utils import cdiv
from vllm.v1.attention.backends.utils import (AttentionMetadataBuilder,
CommonAttentionMetadata)
CommonAttentionMetadata,
get_kv_cache_layout)
from vllm.v1.kv_cache_interface import AttentionSpec
from vllm.v1.worker.block_table import BlockTable
@ -73,16 +72,15 @@ class FlashAttentionBackend(AttentionBackend):
@staticmethod
def get_kv_cache_stride_order() -> tuple[int, ...]:
# NOTE When running disaggregated PD with NIXL, HND layout is used for
# faster transfer. `stride_order` indicates the permutation that gets
# `stride_order` indicates the permutation that gets
# us from `get_kv_cache_shape` to the actual memory layout we want.
cache_layout = get_kv_connector_cache_layout()
cache_layout = get_kv_cache_layout()
if cache_layout == "NHD":
stride_order = (0, 1, 2, 3, 4)
elif cache_layout == "HND":
stride_order = (0, 1, 3, 2, 4)
else:
raise ValueError("Unknown cache layout format %s.", cache_layout)
raise ValueError(f"Unknown cache layout format {cache_layout}.")
return stride_order

View File

@ -19,7 +19,8 @@ from vllm.config import VllmConfig, get_layers_from_vllm_config
from vllm.logger import init_logger
from vllm.v1.attention.backends.flash_attn import use_cascade_attention
from vllm.v1.attention.backends.utils import (AttentionMetadataBuilder,
CommonAttentionMetadata)
CommonAttentionMetadata,
get_kv_cache_layout)
from vllm.v1.kv_cache_interface import AttentionSpec
from vllm.v1.worker.block_table import BlockTable
@ -66,6 +67,19 @@ class FlashInferBackend(AttentionBackend):
) -> tuple[int, ...]:
return (num_blocks, 2, block_size, num_kv_heads, head_size)
@staticmethod
def get_kv_cache_stride_order() -> tuple[int, ...]:
# `stride_order` indicates the permutation that gets us from
# `get_kv_cache_shape` to the actual memory layout we want.
cache_layout = get_kv_cache_layout()
if cache_layout == "NHD":
stride_order = (0, 1, 2, 3, 4)
elif cache_layout == "HND":
stride_order = (0, 1, 3, 2, 4)
else:
raise ValueError(f"Unknown cache layout format {cache_layout}.")
return stride_order
@dataclass
class PerLayerParameters:
@ -290,7 +304,7 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
def _get_prefill_wrapper(self):
if self._prefill_wrapper is None:
self._prefill_wrapper = BatchPrefillWithPagedKVCacheWrapper(
self._get_workspace_buffer(), "NHD")
self._get_workspace_buffer(), get_kv_cache_layout())
return self._prefill_wrapper
def _get_decode_wrapper(self):
@ -303,14 +317,14 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
num_qo_heads // num_kv_heads > 4)
self._decode_wrapper = BatchDecodeWithPagedKVCacheWrapper(
self._get_workspace_buffer(),
"NHD",
get_kv_cache_layout(),
use_tensor_cores=use_tensor_cores)
return self._decode_wrapper
def _get_cascade_wrapper(self):
if self._cascade_wrapper is None:
self._cascade_wrapper = MultiLevelCascadeAttentionWrapper(
2, self._get_workspace_buffer(), "NHD")
2, self._get_workspace_buffer(), get_kv_cache_layout())
return self._cascade_wrapper
def _plan(self, attn_metadata: FlashInferMetadata):
@ -620,6 +634,7 @@ class FlashInferImpl(AttentionImpl):
num_decode_tokens = attn_metadata.num_decode_tokens
num_prefill_tokens = attn_metadata.num_prefill_tokens
stride_order = FlashInferBackend.get_kv_cache_stride_order()
# Regular attention (common case).
# Decodes are at the front and prefills are at the back,
# according to reorder_batch()
@ -634,7 +649,7 @@ class FlashInferImpl(AttentionImpl):
assert prefill_wrapper._sm_scale == self.scale
prefill_wrapper.run(
prefill_query,
kv_cache,
kv_cache.permute(*stride_order),
k_scale=layer._k_scale_float,
v_scale=layer._v_scale_float,
out=output[num_decode_tokens:],
@ -650,7 +665,7 @@ class FlashInferImpl(AttentionImpl):
assert decode_wrapper._sm_scale == self.scale
decode_wrapper.run(
decode_query,
kv_cache,
kv_cache.permute(*stride_order),
k_scale=layer._k_scale_float,
v_scale=layer._v_scale_float,
out=output[:num_decode_tokens],

View File

@ -1,6 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import abc
import functools
from abc import abstractmethod
from dataclasses import dataclass
from typing import TYPE_CHECKING, ClassVar, Generic, TypeVar
@ -12,6 +13,13 @@ if TYPE_CHECKING:
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.worker.gpu_input_batch import InputBatch
import vllm.envs as envs
from vllm.distributed.kv_transfer.kv_connector.utils import (
get_kv_connector_cache_layout)
from vllm.logger import init_logger
logger = init_logger(__name__)
@dataclass
class CommonAttentionMetadata:
@ -119,3 +127,16 @@ def validate_kv_sharing_target(current_layer_name, target_layer_name,
raise ValueError(
error_msg +
f"must be the same type as the current layer ({expected}).")
@functools.lru_cache
def get_kv_cache_layout():
# Override with format specified by the user.
cache_layout = envs.VLLM_KV_CACHE_LAYOUT
if cache_layout is None:
cache_layout = get_kv_connector_cache_layout()
else:
logger.info_once("`FLASHINFER_KV_CACHE_LAYOUT` environment variable " \
"detected. Setting KV cache layout to %s.", cache_layout)
return cache_layout