Add documentation section about LoRA (#2834)

This commit is contained in:
Philipp Moritz 2024-02-12 08:24:45 -08:00 committed by GitHub
parent 0580aab02f
commit 4ca2c358b1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 53 additions and 0 deletions

View File

@ -82,6 +82,7 @@ Documentation
models/supported_models
models/adding_model
models/engine_args
models/lora
.. toctree::
:maxdepth: 1

View File

@ -0,0 +1,52 @@
.. _lora:
Using LoRA adapters
===================
This document shows you how to use `LoRA adapters <https://arxiv.org/abs/2106.09685>`_ with vLLM on top of a base model.
Adapters can be efficiently served on a per request basis with minimal overhead. First we download the adapter(s) and save
them locally with
.. code-block:: python
from huggingface_hub import snapshot_download
sql_lora_path = snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test")
Then we instantiate the base model and pass in the ``enable_lora=True`` flag:
.. code-block:: python
from vllm import LLM, SamplingParams
from vllm.lora.request import LoRARequest
llm = LLM(model="meta-llama/Llama-2-7b-hf", enable_lora=True)
We can now submit the prompts and call ``llm.generate`` with the ``lora_request`` parameter. The first parameter
of ``LoRARequest`` is a human identifiable name, the second parameter is a globally unique ID for the adapter and
the third parameter is the path to the LoRA adapter.
.. code-block:: python
sampling_params = SamplingParams(
temperature=0,
max_tokens=256,
stop=["[/assistant]"]
)
prompts = [
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]",
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]",
]
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest("sql_adapter", 1, sql_lora_path)
)
Check out `examples/multilora_inference.py <https://github.com/vllm-project/vllm/blob/main/examples/multilora_inference.py>`_
for an example of how to use LoRA adapters with the async engine and how to use more advanced configuration options.