mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 01:04:57 +08:00
Fix undefined symbol: cutlass_moe_mm_sm100 (#26098)
Signed-off-by: Jun Jiang <jasl9187@hotmail.com> Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
This commit is contained in:
parent
d78fda7cda
commit
4f8f47e87e
@ -667,7 +667,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 13.0)
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f" "${CUDA_ARCHS}")
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0f;11.0f" "${CUDA_ARCHS}")
|
||||
else()
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
endif()
|
||||
|
||||
@ -254,7 +254,7 @@ void cutlass_moe_mm(
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
int32_t version_num = get_sm_version_num();
|
||||
#if defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100
|
||||
if (version_num >= 100) {
|
||||
if (version_num >= 100 && version_num < 110) {
|
||||
cutlass_moe_mm_sm100(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
@ -262,7 +262,7 @@ void cutlass_moe_mm(
|
||||
}
|
||||
#endif
|
||||
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
|
||||
if (version_num >= 90) {
|
||||
if (version_num >= 90 && version_num < 100) {
|
||||
cutlass_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
|
||||
@ -2747,6 +2747,8 @@ class MemorySnapshot:
|
||||
self.measure()
|
||||
|
||||
def measure(self):
|
||||
from vllm.platforms import current_platform
|
||||
|
||||
# we measure the torch peak memory usage via allocated_bytes,
|
||||
# rather than `torch.cuda.memory_reserved()` .
|
||||
# After `torch.cuda.reset_peak_memory_stats()`,
|
||||
@ -2756,6 +2758,24 @@ class MemorySnapshot:
|
||||
"allocated_bytes.all.peak", 0)
|
||||
|
||||
self.free_memory, self.total_memory = torch.cuda.mem_get_info()
|
||||
shared_sysmem_device_mem_sms = (
|
||||
(8, 7), (11, 0), (12, 1)) # Orin, Thor, Spark
|
||||
if current_platform.is_cuda() and \
|
||||
current_platform.get_device_capability() in \
|
||||
shared_sysmem_device_mem_sms:
|
||||
# On UMA (Orin, Thor and Spark) platform,
|
||||
# where both CPU and GPU rely on system memory,
|
||||
# the cudaMemGetInfo function shows the amount of free system memory
|
||||
# rather than what’s actually available.
|
||||
# In the case,
|
||||
# torch.cuda.mem_get_info() only reports "free" memory,
|
||||
# which can be lower than what is actually
|
||||
# available due to not including cache memory.
|
||||
# There’s also a comprehensive reference page
|
||||
# that explains how you can compute the proper value yourself.
|
||||
# https://docs.nvidia.com/cuda/cuda-for-tegra-appnote/#estimating-total-allocatable-device-memory-on-an-integrated-gpu-device
|
||||
self.free_memory = psutil.virtual_memory().available
|
||||
|
||||
self.cuda_memory = self.total_memory - self.free_memory
|
||||
|
||||
# torch.cuda.memory_reserved() is how many bytes
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user