[Core] Support multi-node inference(eager and cuda graph) (#3686)

This commit is contained in:
Roy 2024-03-29 06:01:55 +08:00 committed by GitHub
parent a4075cba4d
commit 515386ef3c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 25 additions and 22 deletions

View File

@ -24,7 +24,7 @@ def all_reduce_test_worker(tensor_parallel_size: int, rank: int,
del os.environ["CUDA_VISIBLE_DEVICES"]
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
init_test_distributed_environment(1, tensor_parallel_size, rank,
init_test_distributed_environment(1, tensor_parallel_size, rank, rank,
distributed_init_port)
num_elements = 8
all_tensors = [
@ -46,7 +46,7 @@ def all_gather_test_worker(tensor_parallel_size: int, rank: int,
del os.environ["CUDA_VISIBLE_DEVICES"]
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
init_test_distributed_environment(1, tensor_parallel_size, rank,
init_test_distributed_environment(1, tensor_parallel_size, rank, rank,
distributed_init_port)
num_dimensions = 3
tensor_size = list(range(2, num_dimensions + 2))
@ -74,7 +74,7 @@ def broadcast_tensor_dict_test_worker(tensor_parallel_size: int, rank: int,
del os.environ["CUDA_VISIBLE_DEVICES"]
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
init_test_distributed_environment(1, tensor_parallel_size, rank,
init_test_distributed_environment(1, tensor_parallel_size, rank, rank,
distributed_init_port)
test_dict = {
"a": torch.arange(8, dtype=torch.float32, device="cuda"),

View File

@ -23,7 +23,7 @@ def graph_allreduce(world_size, rank, distributed_init_port):
del os.environ["CUDA_VISIBLE_DEVICES"]
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
init_test_distributed_environment(1, world_size, rank,
init_test_distributed_environment(1, world_size, rank, rank,
distributed_init_port)
custom_ar.init_custom_ar()
@ -58,7 +58,7 @@ def eager_allreduce(world_size, rank, distributed_init_port):
del os.environ["CUDA_VISIBLE_DEVICES"]
device = torch.device(f"cuda:{rank}")
torch.cuda.set_device(device)
init_test_distributed_environment(1, world_size, rank,
init_test_distributed_environment(1, world_size, rank, rank,
distributed_init_port)
sz = 1024

View File

@ -188,8 +188,6 @@ class RayGPUExecutor(ExecutorBase):
is_driver_worker=True,
)
# FIXME(woosuk): We are not properly initializing pynccl when
# we have multiple nodes.
self._run_workers("init_device")
self._run_workers(
"load_model",

View File

@ -202,6 +202,7 @@ class NCCLCommunicator:
init_method=None,
timeout=datetime.timedelta(seconds=10),
world_size: int = -1,
local_rank: int = -1,
rank: int = -1,
store=None,
group_name: str = "",
@ -219,25 +220,22 @@ class NCCLCommunicator:
store=store,
group_name=group_name,
pg_options=pg_options)
self.world_size = dist.get_world_size()
self.rank = dist.get_rank()
torch.cuda.set_device(self.rank)
if self.rank == 0:
torch.cuda.set_device(local_rank)
if rank == 0:
self.unique_id = ncclGetUniqueId()
else:
self.unique_id = NcclUniqueId()
tensor = torch.ByteTensor(list(self.unique_id.internal)).cuda(
self.rank)
tensor = torch.ByteTensor(list(
self.unique_id.internal)).cuda(local_rank)
dist.broadcast(tensor, src=0)
byte_list = tensor.cpu().tolist()
self.unique_id = NcclUniqueId()
for i, byte in enumerate(byte_list):
self.unique_id.internal[i] = byte
self.comm = ctypes.c_void_p()
result = _c_ncclCommInitRank(ctypes.byref(self.comm), self.world_size,
self.unique_id, self.rank)
result = _c_ncclCommInitRank(ctypes.byref(self.comm), world_size,
self.unique_id, rank)
assert result == 0
self.stream = torch.cuda.Stream(device=f"cuda:{self.rank}")
self.stream = torch.cuda.Stream(device=f"cuda:{local_rank}")
def all_reduce(self,
tensor: torch.Tensor,

View File

@ -36,11 +36,13 @@ def set_pynccl_stream(stream: torch.cuda.Stream):
pass
def init_process_group(world_size: int, rank: int, init_method: str) -> None:
def init_process_group(world_size: int, local_rank: int, rank: int,
init_method: str) -> None:
assert not is_initialized()
global comm
comm = NCCLCommunicator(init_method=init_method,
world_size=world_size,
local_rank=local_rank,
rank=rank)

View File

@ -8,6 +8,7 @@ from vllm.worker.worker import init_distributed_environment
def init_test_distributed_environment(
pipeline_parallel_size: int,
tensor_parallel_size: int,
local_rank: int,
rank: int,
distributed_init_port: str,
) -> None:
@ -16,7 +17,10 @@ def init_test_distributed_environment(
worker_use_ray=True)
distributed_init_method = f"tcp://localhost:{distributed_init_port}"
init_distributed_environment(
parallel_config, rank, distributed_init_method=distributed_init_method)
parallel_config,
local_rank,
rank,
distributed_init_method=distributed_init_method)
def multi_process_tensor_parallel(

View File

@ -97,8 +97,8 @@ class Worker:
raise RuntimeError(
f"Not support device type: {self.device_config.device}")
# Initialize the distributed environment.
init_distributed_environment(self.parallel_config, self.rank,
self.distributed_init_method)
init_distributed_environment(self.parallel_config, self.local_rank,
self.rank, self.distributed_init_method)
# Set random seed.
set_random_seed(self.model_config.seed)
@ -249,6 +249,7 @@ class Worker:
def init_distributed_environment(
parallel_config: ParallelConfig,
local_rank: int,
rank: int,
distributed_init_method: Optional[str] = None,
) -> None:
@ -282,9 +283,9 @@ def init_distributed_environment(
elif parallel_config.world_size > 1:
# NOTE(woosuk): We don't initialize pynccl process group when world size
# is 1.
# TODO(woosuk): Support multi-node connection.
pynccl_utils.init_process_group(
world_size=parallel_config.world_size,
local_rank=local_rank,
rank=rank,
init_method=distributed_init_method,
)