Support Microsoft Phi 1.5 (#1664)

This commit is contained in:
maximzubkov 2023-11-16 23:28:39 +01:00 committed by GitHub
parent cb08cd0d75
commit 521b35f799
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 320 additions and 0 deletions

View File

@ -59,6 +59,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.) - Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.) - MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.) - OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
- Phi-1.5 (`microsoft/phi-1_5`, etc.)
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.) - Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source): Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):

View File

@ -5,6 +5,7 @@ pandas # Required for Ray data.
pyarrow # Required for Ray data. pyarrow # Required for Ray data.
sentencepiece # Required for LLaMA tokenizer. sentencepiece # Required for LLaMA tokenizer.
numpy numpy
einops # Required for phi-1_5
torch >= 2.1.0 torch >= 2.1.0
transformers >= 4.34.0 # Required for Mistral. transformers >= 4.34.0 # Required for Mistral.
xformers >= 0.0.22.post7 # Required for CUDA 12.1. xformers >= 0.0.22.post7 # Required for CUDA 12.1.

View File

@ -15,6 +15,7 @@ MODELS = [
"EleutherAI/pythia-70m", "EleutherAI/pythia-70m",
"bigscience/bloom-560m", "bigscience/bloom-560m",
"mosaicml/mpt-7b", "mosaicml/mpt-7b",
"microsoft/phi-1_5",
] ]

View File

@ -32,6 +32,7 @@ _MODEL_REGISTRY = {
"MptForCausalLM": MPTForCausalLM, "MptForCausalLM": MPTForCausalLM,
"MPTForCausalLM": MPTForCausalLM, "MPTForCausalLM": MPTForCausalLM,
"OPTForCausalLM": OPTForCausalLM, "OPTForCausalLM": OPTForCausalLM,
"PhiForCausalLM": PhiForCausalLM,
"QWenLMHeadModel": QWenLMHeadModel, "QWenLMHeadModel": QWenLMHeadModel,
"RWForCausalLM": FalconForCausalLM, "RWForCausalLM": FalconForCausalLM,
"YiForCausalLM": YiForCausalLM, "YiForCausalLM": YiForCausalLM,

View File

@ -12,6 +12,7 @@ from vllm.model_executor.models.llama import LlamaForCausalLM
from vllm.model_executor.models.mistral import MistralForCausalLM from vllm.model_executor.models.mistral import MistralForCausalLM
from vllm.model_executor.models.mpt import MPTForCausalLM from vllm.model_executor.models.mpt import MPTForCausalLM
from vllm.model_executor.models.opt import OPTForCausalLM from vllm.model_executor.models.opt import OPTForCausalLM
from vllm.model_executor.models.phi_1_5 import PhiForCausalLM
from vllm.model_executor.models.qwen import QWenLMHeadModel from vllm.model_executor.models.qwen import QWenLMHeadModel
from vllm.model_executor.models.chatglm import ChatGLMForCausalLM from vllm.model_executor.models.chatglm import ChatGLMForCausalLM
from vllm.model_executor.models.yi import YiForCausalLM from vllm.model_executor.models.yi import YiForCausalLM
@ -31,6 +32,7 @@ __all__ = [
"LlamaForCausalLM", "LlamaForCausalLM",
"MPTForCausalLM", "MPTForCausalLM",
"OPTForCausalLM", "OPTForCausalLM",
"PhiForCausalLM",
"QWenLMHeadModel", "QWenLMHeadModel",
"MistralForCausalLM", "MistralForCausalLM",
"YiForCausalLM", "YiForCausalLM",

View File

@ -0,0 +1,314 @@
# coding=utf-8
# Adapted from
# https://huggingface.co/microsoft/phi-1_5/blob/main/modeling_phi.py
# Copyright 2023 The vLLM team.
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
#
# BSD 3-Clause License
#
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Inference-only Phi-1.5 model compatible with HuggingFace weights.
The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
LinearMethodBase,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding, ParallelLMHead)
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_world_size)
from vllm.model_executor.weight_utils import (default_weight_loader,
hf_model_weights_iterator)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class PhiEmbedding(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.wte = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
def forward(self, input_ids: torch.LongTensor):
return self.wte(input_ids)
class PhiAttention(nn.Module):
def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.total_num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.total_num_heads
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
# pylint: disable=C0103
self.Wqkv = QKVParallelLinear(
self.hidden_size,
self.head_size,
self.total_num_heads,
linear_method=linear_method,
)
self.qkv_proj = QKVParallelLinear(
config.hidden_size,
self.head_size,
self.total_num_heads,
bias=False,
linear_method=linear_method,
)
self.out_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
linear_method=linear_method,
)
scaling = self.head_size**-0.5
rotary_dim = config.rotary_dim
assert rotary_dim % 2 == 0
# pylint: disable=C0301
# Refer to:
# https://huggingface.co/microsoft/phi-1_5/blob/d212a789620c380ff32ca1d1ee9943a777360987/modeling_phi.py#L518
rope_theta = 10000
max_position_embeddings = getattr(config, "n_positions", 2048)
self.attn = PagedAttentionWithRoPE(
self.num_heads,
self.head_size,
scaling,
rotary_dim,
base=rope_theta,
max_position=max_position_embeddings)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.Wqkv(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(position_ids, q, k, v, k_cache, v_cache,
input_metadata, cache_event)
output, _ = self.out_proj(attn_output)
return output
class PhiMLP(nn.Module):
def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
n_inner = getattr(config, "n_inner", None)
n_inner = n_inner if n_inner is not None else 4 * config.hidden_size
self.fc1 = ColumnParallelLinear(
config.hidden_size,
n_inner,
linear_method=linear_method,
)
self.fc2 = RowParallelLinear(
n_inner,
config.hidden_size,
linear_method=linear_method,
)
self.act = get_act_fn(config.activation_function)
def forward(self, hidden_states):
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
return hidden_states
class PhiLayer(nn.Module):
def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.ln = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.mixer = PhiAttention(config, linear_method)
self.mlp = PhiMLP(config, linear_method)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.ln(hidden_states)
attn_outputs = self.mixer(
position_ids=position_ids,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
feed_forward_hidden_states = self.mlp(hidden_states)
hidden_states = attn_outputs + feed_forward_hidden_states + residual
return hidden_states
class PhiCausalLMHead(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.ln = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.linear = ParallelLMHead(config.vocab_size,
config.hidden_size,
bias=True)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
hidden_states: torch.Tensor,
input_metadata: InputMetadata,
):
hidden_states = self.ln(hidden_states)
next_tokens = self.sampler(self.linear.weight, hidden_states,
input_metadata, self.linear.bias)
return next_tokens
class PhiModel(nn.Module):
def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.config = config
self.linear_method = linear_method
self.embd = PhiEmbedding(config)
self.h = nn.ModuleList([
PhiLayer(config, linear_method)
for _ in range(config.num_hidden_layers)
])
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.embd(input_ids)
for i in range(self.config.num_hidden_layers):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.h[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
return hidden_states
class PhiForCausalLM(nn.Module):
def __init__(self,
config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None):
super().__init__()
self.config = config
self.linear_method = linear_method
self.transformer = PhiModel(config, linear_method)
self.lm_head = PhiCausalLMHead(config)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.transformer(input_ids, positions, kv_caches,
input_metadata, cache_events)
lm_logits = self.lm_head(hidden_states, input_metadata)
return lm_logits
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
# pylint: disable=E1136
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)