[Frontend][VLM] Add support for multiple multi-modal items (#8049)

This commit is contained in:
Roger Wang 2024-08-31 16:35:53 -07:00 committed by GitHub
parent 8423aef4c8
commit 5231f0898e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 524 additions and 136 deletions

View File

@ -90,6 +90,7 @@ steps:
- pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py
- pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process
- pytest -v -s entrypoints/openai
- pytest -v -s entrypoints/test_chat_utils.py
- label: Distributed Tests (4 GPUs) # 10min
working_dir: "/vllm-workspace/tests"

View File

@ -1,7 +1,13 @@
"""An example showing how to use vLLM to serve VLMs.
Launch the vLLM server with the following command:
(single image inference with Llava)
vllm serve llava-hf/llava-1.5-7b-hf --chat-template template_llava.jinja
(multi-image inference with Phi-3.5-vision-instruct)
vllm serve microsoft/Phi-3.5-vision-instruct --max-model-len 4096 \
--trust-remote-code --limit-mm-per-prompt image=2
"""
import base64
@ -84,3 +90,36 @@ chat_completion_from_base64 = client.chat.completions.create(
result = chat_completion_from_base64.choices[0].message.content
print(f"Chat completion output:{result}")
# Multi-image input inference
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What are the animals in these images?"
},
{
"type": "image_url",
"image_url": {
"url": image_url_duck
},
},
{
"type": "image_url",
"image_url": {
"url": image_url_lion
},
},
],
}],
model=model,
max_tokens=64,
)
result = chat_completion_from_url.choices[0].message.content
print(f"Chat completion output:{result}")

View File

@ -3,6 +3,7 @@ from contextlib import suppress
from dataclasses import dataclass
from unittest.mock import MagicMock
from vllm.config import MultiModalConfig
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import ChatCompletionRequest
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
@ -20,6 +21,7 @@ class MockModelConfig:
max_model_len = 100
tokenizer_revision = None
embedding_mode = False
multimodal_config = MultiModalConfig()
@dataclass

View File

@ -6,11 +6,10 @@ import pytest_asyncio
from vllm.multimodal.utils import encode_image_base64, fetch_image
from ...utils import VLLM_PATH, RemoteOpenAIServer
from ...utils import RemoteOpenAIServer
MODEL_NAME = "llava-hf/llava-1.5-7b-hf"
LLAVA_CHAT_TEMPLATE = VLLM_PATH / "examples/template_llava.jinja"
assert LLAVA_CHAT_TEMPLATE.exists()
MODEL_NAME = "microsoft/Phi-3.5-vision-instruct"
MAXIMUM_IMAGES = 2
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
TEST_IMAGE_URLS = [
@ -24,13 +23,9 @@ TEST_IMAGE_URLS = [
@pytest.fixture(scope="module")
def server():
args = [
"--dtype",
"bfloat16",
"--max-model-len",
"4096",
"--enforce-eager",
"--chat-template",
str(LLAVA_CHAT_TEMPLATE),
"--dtype", "bfloat16", "--max-model-len", "4096", "--max-num-seqs",
"5", "--enforce-eager", "--trust-remote-code", "--limit-mm-per-prompt",
f"image={MAXIMUM_IMAGES}"
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
@ -84,7 +79,7 @@ async def test_single_chat_session_image(client: openai.AsyncOpenAI,
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=596, total_tokens=606)
completion_tokens=10, prompt_tokens=772, total_tokens=782)
message = choice.message
message = chat_completion.choices[0].message
@ -139,7 +134,7 @@ async def test_single_chat_session_image_base64encoded(
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=596, total_tokens=606)
completion_tokens=10, prompt_tokens=772, total_tokens=782)
message = choice.message
message = chat_completion.choices[0].message
@ -217,26 +212,22 @@ async def test_chat_streaming_image(client: openai.AsyncOpenAI,
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_URLS)
@pytest.mark.parametrize(
"image_urls",
[TEST_IMAGE_URLS[:i] for i in range(2, len(TEST_IMAGE_URLS))])
async def test_multi_image_input(client: openai.AsyncOpenAI, model_name: str,
image_url: str):
image_urls: List[str]):
messages = [{
"role":
"user",
"content": [
{
*({
"type": "image_url",
"image_url": {
"url": image_url
}
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
},
} for image_url in image_urls),
{
"type": "text",
"text": "What's in this image?"
@ -244,20 +235,30 @@ async def test_multi_image_input(client: openai.AsyncOpenAI, model_name: str,
],
}]
with pytest.raises(openai.BadRequestError): # test multi-image input
await client.chat.completions.create(
if len(image_urls) > MAXIMUM_IMAGES:
with pytest.raises(openai.BadRequestError): # test multi-image input
await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
)
# the server should still work afterwards
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
)
completion = completion.choices[0].text
assert completion is not None and len(completion) >= 0
else:
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=10,
temperature=0.0,
)
# the server should still work afterwards
completion = await client.completions.create(
model=model_name,
prompt=[0, 0, 0, 0, 0],
max_tokens=5,
temperature=0.0,
)
completion = completion.choices[0].text
assert completion is not None and len(completion) >= 0
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0

View File

@ -0,0 +1,305 @@
import warnings
import pytest
from PIL import Image
from vllm.assets.image import ImageAsset
from vllm.config import ModelConfig
from vllm.entrypoints.chat_utils import parse_chat_messages
from vllm.multimodal.utils import encode_image_base64
from vllm.transformers_utils.tokenizer_group import TokenizerGroup
PHI3V_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"
@pytest.fixture(scope="module")
def phi3v_model_config():
return ModelConfig(PHI3V_MODEL_ID,
PHI3V_MODEL_ID,
tokenizer_mode="auto",
trust_remote_code=True,
dtype="bfloat16",
seed=0,
limit_mm_per_prompt={
"image": 2,
})
@pytest.fixture(scope="module")
def phi3v_tokenizer():
return TokenizerGroup(
tokenizer_id=PHI3V_MODEL_ID,
enable_lora=False,
max_num_seqs=5,
max_input_length=None,
)
@pytest.fixture(scope="module")
def image_url():
image = ImageAsset('cherry_blossom')
base64 = encode_image_base64(image.pil_image)
return f"data:image/jpeg;base64,{base64}"
@pytest.mark.asyncio
async def test_parse_chat_messages_with_image_url(phi3v_model_config,
phi3v_tokenizer, image_url):
conversation, mm_future = parse_chat_messages([{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in the image?"
}]
}], phi3v_model_config, phi3v_tokenizer)
assert conversation == [{
"role": "user",
"content": "<|image_1|>\nWhat's in the image?"
}]
mm_data = await mm_future
assert set(mm_data.keys()) == {"image"}
assert isinstance(mm_data["image"], Image.Image)
@pytest.mark.asyncio
async def test_parse_chat_messages_multiple_images(phi3v_model_config,
phi3v_tokenizer, image_url):
conversation, mm_future = parse_chat_messages([{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in these images?"
}]
}], phi3v_model_config, phi3v_tokenizer)
assert conversation == [{
"role":
"user",
"content":
"<|image_1|>\n<|image_2|>\nWhat's in these images?"
}]
mm_data = await mm_future
assert set(mm_data.keys()) == {"image"}
assert len(mm_data["image"]) == 2
@pytest.mark.asyncio
async def test_parse_chat_messages_placeholder_already_in_prompt(
phi3v_model_config, phi3v_tokenizer, image_url):
conversation, mm_future = parse_chat_messages([{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type":
"text",
"text":
"What's in <|image_1|> and how does it compare to <|image_2|>?"
}]
}], phi3v_model_config, phi3v_tokenizer)
assert conversation == [{
"role":
"user",
"content":
"What's in <|image_1|> and how does it compare to <|image_2|>?"
}]
mm_data = await mm_future
assert set(mm_data.keys()) == {"image"}
assert len(mm_data["image"]) == 2
@pytest.mark.asyncio
async def test_parse_chat_messages_placeholder_one_already_in_prompt(
phi3v_model_config, phi3v_tokenizer, image_url):
conversation, mm_future = parse_chat_messages([{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type":
"text",
"text":
"What's in <|image_1|> and how does it compare to the other one?"
}]
}], phi3v_model_config, phi3v_tokenizer)
assert conversation == [{
"role":
"user",
"content":
"<|image_2|>\nWhat's in <|image_1|> and how does it compare to the "
"other one?"
}]
mm_data = await mm_future
assert set(mm_data.keys()) == {"image"}
assert len(mm_data["image"]) == 2
@pytest.mark.asyncio
async def test_parse_chat_messages_multiple_images_across_messages(
phi3v_model_config, phi3v_tokenizer, image_url):
conversation, mm_future = parse_chat_messages([{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in this image?"
}]
}, {
"role": "assistant",
"content": "Some stuff."
}, {
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What about this one?"
}]
}], phi3v_model_config, phi3v_tokenizer)
assert conversation == [
{
"role": "user",
"content": "<|image_1|>\nWhat's in this image?"
},
{
"role": "assistant",
"content": "Some stuff."
},
{
"role": "user",
"content": "<|image_2|>\nWhat about this one?"
},
]
mm_data = await mm_future
assert set(mm_data.keys()) == {"image"}
assert len(mm_data["image"]) == 2
@pytest.mark.asyncio
async def test_parse_chat_messages_rejects_too_many_images_in_one_message(
phi3v_model_config, phi3v_tokenizer, image_url):
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message="coroutine 'async_get_and_parse_image' was never awaited")
with pytest.raises(
ValueError,
match="At most 2 image\\(s\\) may be provided in one request\\."
):
parse_chat_messages([{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in these images?"
}]
}], phi3v_model_config, phi3v_tokenizer)
@pytest.mark.asyncio
async def test_parse_chat_messages_rejects_too_many_images_across_messages(
phi3v_model_config, phi3v_tokenizer, image_url):
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message="coroutine 'async_get_and_parse_image' was never awaited")
with pytest.raises(
ValueError,
match="At most 2 image\\(s\\) may be provided in one request\\."
):
parse_chat_messages([{
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What's in this image?"
}]
}, {
"role": "assistant",
"content": "Some stuff."
}, {
"role":
"user",
"content": [{
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "image_url",
"image_url": {
"url": image_url
}
}, {
"type": "text",
"text": "What about these two?"
}]
}], phi3v_model_config, phi3v_tokenizer)

View File

@ -1,9 +1,10 @@
import asyncio
import codecs
from dataclasses import dataclass
from collections import defaultdict
from functools import lru_cache
from pathlib import Path
from typing import (Any, Awaitable, Iterable, List, Literal, Optional, Tuple,
Union)
from typing import (Any, Awaitable, Dict, Iterable, List, Literal, Mapping,
Optional, Tuple, Union)
# yapf conflicts with isort for this block
# yapf: disable
@ -80,10 +81,90 @@ class ConversationMessage(TypedDict):
content: str
@dataclass(frozen=True)
class ChatMessageParseResult:
messages: List[ConversationMessage]
mm_futures: List[Awaitable[MultiModalDataDict]]
class MultiModalItemTracker:
"""
Tracks multi-modal items in a given request and ensures that the number
of multi-modal items in a given request does not exceed the configured
maximum per prompt.
"""
def __init__(self, model_config: ModelConfig, tokenizer: AnyTokenizer):
self._model_config = model_config
self._tokenizer = tokenizer
self._allowed_items = (model_config.multimodal_config.limit_per_prompt
if model_config.multimodal_config else {})
self._consumed_items = {k: 0 for k in self._allowed_items}
self._futures: List[Awaitable[MultiModalDataDict]] = []
@staticmethod
@lru_cache(maxsize=None)
def _cached_token_str(tokenizer: AnyTokenizer, token_index: int):
return tokenizer.decode(token_index)
def add(self, modality: Literal["image", "audio"],
mm_future: Awaitable[MultiModalDataDict]) -> Optional[str]:
"""
Adds the multi-modal item to the current prompt and returns the
placeholder string to use, if any.
"""
allowed_count = self._allowed_items.get(modality, 1)
current_count = self._consumed_items.get(modality, 0) + 1
if current_count > allowed_count:
raise ValueError(
f"At most {allowed_count} {modality}(s) may be provided in "
"one request.")
self._consumed_items[modality] = current_count
self._futures.append(mm_future)
# TODO: Let user specify how to insert image tokens into prompt
# (similar to chat template)
model_type = self._model_config.hf_config.model_type
if modality == "image":
if model_type == "phi3_v":
# Workaround since this token is not defined in the tokenizer
return f"<|image_{current_count}|>"
if model_type == "minicpmv":
return "(<image>./</image>)"
if model_type in ("blip-2", "chatglm", "fuyu", "paligemma"):
# These models do not use image tokens in the prompt
return None
if model_type.startswith("llava"):
return MultiModalItemTracker._cached_token_str(
self._tokenizer,
self._model_config.hf_config.image_token_index)
if model_type in ("chameleon", "internvl_chat"):
return "<image>"
raise TypeError(f"Unknown model type: {model_type}")
elif modality == "audio":
if model_type == "ultravox":
return "<|reserved_special_token_0|>"
raise TypeError(f"Unknown model type: {model_type}")
else:
raise TypeError(f"Unknown modality: {modality}")
@staticmethod
async def _combine(futures: List[Awaitable[MultiModalDataDict]]):
mm_lists: Mapping[str, List[object]] = defaultdict(list)
# Merge all the multi-modal items
for single_mm_data in (await asyncio.gather(*futures)):
for mm_key, mm_item in single_mm_data.items():
if isinstance(mm_item, list):
mm_lists[mm_key].extend(mm_item)
else:
mm_lists[mm_key].append(mm_item)
# Unpack any single item lists for models that don't expect multiple.
return {
mm_key: mm_list[0] if len(mm_list) == 1 else mm_list
for mm_key, mm_list in mm_lists.items()
}
def all_mm_data(self) -> Optional[Awaitable[MultiModalDataDict]]:
return MultiModalItemTracker._combine(
self._futures) if self._futures else None
def load_chat_template(
@ -112,44 +193,30 @@ def load_chat_template(
return resolved_chat_template
@lru_cache(maxsize=None)
def _mm_token_str(model_config: ModelConfig, tokenizer: AnyTokenizer,
modality: Literal["image", "audio"]) -> Optional[str]:
# TODO: Let user specify how to insert image tokens into prompt
# (similar to chat template)
model_type = model_config.hf_config.model_type
if modality == "image":
if model_type == "phi3_v":
# Workaround since this token is not defined in the tokenizer
return "<|image_1|>"
if model_type == "minicpmv":
return "(<image>./</image>)"
if model_type in ("blip-2", "chatglm", "fuyu", "paligemma"):
# These models do not use image tokens in the prompt
return None
if model_type.startswith("llava"):
return tokenizer.decode(model_config.hf_config.image_token_index)
if model_type in ("chameleon", "internvl_chat"):
return "<image>"
raise TypeError(f"Unknown model type: {model_type}")
elif modality == "audio":
if model_type == "ultravox":
return "<|reserved_special_token_0|>"
raise TypeError(f"Unknown model type: {model_type}")
else:
raise TypeError(f"Unknown modality: {modality}")
# TODO: Let user specify how to insert multimodal tokens into prompt
# (similar to chat template)
def _get_full_multimodal_text_prompt(placeholder_token_str: str,
def _get_full_multimodal_text_prompt(placeholder_counts: Dict[str, int],
text_prompt: str) -> str:
"""Combine multimodal prompts for a multimodal language model"""
# NOTE: For now we assume all model architectures use the same
# placeholder + text prompt format. This may change in the future.
return f"{placeholder_token_str}\n{text_prompt}"
# Look through the text prompt to check for missing placeholders
missing_placeholders = []
for placeholder in placeholder_counts:
# For any existing placeholder in the text prompt, we leave it as is
placeholder_counts[placeholder] -= text_prompt.count(placeholder)
if placeholder_counts[placeholder] < 0:
raise ValueError(
f"Found more '{placeholder}' placeholders in input prompt than "
"actual multimodal data items.")
missing_placeholders.extend([placeholder] *
placeholder_counts[placeholder])
# NOTE: For now we always add missing placeholders at the front of
# the prompt. This may change to be customizable in the future.
return "\n".join(missing_placeholders + [text_prompt])
_TextParser = TypeAdapter(ChatCompletionContentPartTextParam)
@ -160,12 +227,12 @@ _AudioParser = TypeAdapter(ChatCompletionContentPartAudioParam)
def _parse_chat_message_content_parts(
role: str,
parts: Iterable[ChatCompletionContentPartParam],
model_config: ModelConfig,
tokenizer: AnyTokenizer,
) -> ChatMessageParseResult:
mm_tracker: MultiModalItemTracker,
) -> List[ConversationMessage]:
texts: List[str] = []
mm_futures: List[Awaitable[MultiModalDataDict]] = []
modality: Literal["image", "audio"] = "image"
# multimodal placeholder_string : count
mm_placeholder_counts: Dict[str, int] = {}
for part in parts:
part_type = part["type"]
@ -173,11 +240,6 @@ def _parse_chat_message_content_parts(
text = _TextParser.validate_python(part)["text"]
texts.append(text)
elif part_type == "image_url":
modality = "image"
if len(mm_futures) > 0:
raise NotImplementedError(
"Multiple multimodal inputs is currently not supported.")
image_url = _ImageParser.validate_python(part)["image_url"]
if image_url.get("detail", "auto") != "auto":
@ -185,60 +247,44 @@ def _parse_chat_message_content_parts(
"'image_url.detail' is currently not supported and "
"will be ignored.")
image_future = async_get_and_parse_image(image_url["url"])
mm_futures.append(image_future)
image_coro = async_get_and_parse_image(image_url["url"])
placeholder = mm_tracker.add("image", image_coro)
if placeholder:
mm_placeholder_counts[placeholder] = mm_placeholder_counts.get(
placeholder, 0) + 1
elif part_type == "audio_url":
modality = "audio"
if len(mm_futures) > 0:
raise NotImplementedError(
"Multiple multimodal inputs is currently not supported.")
audio_url = _AudioParser.validate_python(part)["audio_url"]
audio_future = async_get_and_parse_audio(audio_url["url"])
mm_futures.append(audio_future)
audio_coro = async_get_and_parse_audio(audio_url["url"])
placeholder = mm_tracker.add("audio", audio_coro)
if placeholder:
mm_placeholder_counts[placeholder] = mm_placeholder_counts.get(
placeholder, 0) + 1
else:
raise NotImplementedError(f"Unknown part type: {part_type}")
text_prompt = "\n".join(texts)
if mm_placeholder_counts:
text_prompt = _get_full_multimodal_text_prompt(mm_placeholder_counts,
text_prompt)
if mm_futures:
placeholder_token_str = _mm_token_str(model_config, tokenizer,
modality)
if placeholder_token_str is not None:
if placeholder_token_str in text_prompt:
logger.warning(
"Detected multi-modal token string in the text prompt. "
"Skipping prompt formatting.")
else:
text_prompt = _get_full_multimodal_text_prompt(
placeholder_token_str=placeholder_token_str,
text_prompt=text_prompt,
)
messages = [ConversationMessage(role=role, content=text_prompt)]
return ChatMessageParseResult(messages=messages, mm_futures=mm_futures)
return [ConversationMessage(role=role, content=text_prompt)]
def _parse_chat_message_content(
message: ChatCompletionMessageParam,
model_config: ModelConfig,
tokenizer: AnyTokenizer,
) -> ChatMessageParseResult:
message: ChatCompletionMessageParam,
mm_tracker: MultiModalItemTracker) -> List[ConversationMessage]:
role = message["role"]
content = message.get("content")
if content is None:
return ChatMessageParseResult(messages=[], mm_futures=[])
return []
if isinstance(content, str):
messages = [ConversationMessage(role=role, content=content)]
return ChatMessageParseResult(messages=messages, mm_futures=[])
return [ConversationMessage(role=role, content=content)]
return _parse_chat_message_content_parts(
role,
content, # type: ignore
model_config,
tokenizer,
mm_tracker,
)
@ -246,18 +292,16 @@ def parse_chat_messages(
messages: List[ChatCompletionMessageParam],
model_config: ModelConfig,
tokenizer: AnyTokenizer,
) -> Tuple[List[ConversationMessage], List[Awaitable[MultiModalDataDict]]]:
) -> Tuple[List[ConversationMessage], Optional[Awaitable[MultiModalDataDict]]]:
conversation: List[ConversationMessage] = []
mm_futures: List[Awaitable[MultiModalDataDict]] = []
mm_tracker = MultiModalItemTracker(model_config, tokenizer)
for msg in messages:
parse_result = _parse_chat_message_content(msg, model_config,
tokenizer)
sub_messages = _parse_chat_message_content(msg, mm_tracker)
conversation.extend(parse_result.messages)
mm_futures.extend(parse_result.mm_futures)
conversation.extend(sub_messages)
return conversation, mm_futures
return conversation, mm_tracker.all_mm_data()
def apply_chat_template(

View File

@ -94,7 +94,7 @@ class OpenAIServingChat(OpenAIServing):
tokenizer = await self.async_engine_client.get_tokenizer(
lora_request)
conversation, mm_futures = parse_chat_messages(
conversation, mm_data_future = parse_chat_messages(
request.messages, model_config, tokenizer)
tool_dicts = None if request.tools is None else [
@ -116,12 +116,8 @@ class OpenAIServingChat(OpenAIServing):
mm_data: Optional[MultiModalDataDict] = None
try:
if len(mm_futures):
# since we support only single mm data currently
assert len(
mm_futures
) == 1, "Multiple 'image_url' input is currently not supported."
mm_data = await mm_futures[0]
if mm_data_future:
mm_data = await mm_data_future
except Exception as e:
logger.error("Error in loading multi-modal data: %s", e)
return self.create_error_response(str(e))

View File

@ -65,10 +65,10 @@ class OpenAIServingTokenization(OpenAIServing):
if isinstance(request, TokenizeChatRequest):
model_config = self.model_config
conversation, mm_futures = parse_chat_messages(
conversation, mm_data_future = parse_chat_messages(
request.messages, model_config, tokenizer)
if mm_futures:
if mm_data_future:
logger.warning(
"Multi-modal inputs are ignored during tokenization")