[Frontend] Support OpenAI batch file format (#4794)

Co-authored-by: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
This commit is contained in:
Alex Wu 2024-05-15 19:13:36 -04:00 committed by GitHub
parent fc0d9dfc3a
commit 52f8107cf2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 415 additions and 3 deletions

View File

@ -0,0 +1,172 @@
# Offline Inference with the OpenAI Batch file format
**NOTE:** This is a guide to performing batch inference using the OpenAI batch file format, **NOT** the complete Batch (REST) API.
## File Format
The OpenAI batch file format consists of a series of json objects on new lines.
[See here for an example file.](https://github.com/vllm-project/vllm/blob/main/examples/openai_example_batch.jsonl)
Each line represents a separate request. See the [OpenAI package reference](https://platform.openai.com/docs/api-reference/batch/requestInput) for more details.
**NOTE:** We currently only support to `/v1/chat/completions` endpoint (embeddings and completions coming soon).
## Pre-requisites
* Ensure you are using `vllm >= 0.4.3`. You can check by running `python -c "import vllm; print(vllm.__version__)"`.
* The examples in this document use `meta-llama/Meta-Llama-3-8B-Instruct`.
- Create a [user access token](https://huggingface.co/docs/hub/en/security-tokens)
- Install the token on your machine (Run `huggingface-cli login`).
- Get access to the gated model by [visiting the model card](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) and agreeing to the terms and conditions.
## Example: Running with a local file
### Step 1: Create your batch file
To follow along with this example, you can download the example batch, or create your own batch file in your working directory.
```
wget https://raw.githubusercontent.com/vllm-project/vllm/main/examples/openai_example_batch.jsonl
```
Once you've created your batch file it should look like this
```
$ cat openai_example_batch.jsonl
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
```
### Step 2: Run the batch
The batch running tool is designed to be used from the command line.
You can run the batch with the following command, which will write its results to a file called `results.jsonl`
```
python -m vllm.entrypoints.openai.run_batch -i openai_example_batch.jsonl -o results.jsonl --model meta-llama/Meta-Llama-3-8B-Instruct
```
### Step 3: Check your results
You should now have your results at `results.jsonl`. You can check your results by running `cat results.jsonl`
```
$ cat ../results.jsonl
{"id":"vllm-383d1c59835645aeb2e07d004d62a826","custom_id":"request-1","response":{"id":"cmpl-61c020e54b964d5a98fa7527bfcdd378","object":"chat.completion","created":1715633336,"model":"meta-llama/Meta-Llama-3-8B-Instruct","choices":[{"index":0,"message":{"role":"assistant","content":"Hello! It's great to meet you! I'm here to help with any questions or tasks you may have. What's on your mind today?"},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":25,"total_tokens":56,"completion_tokens":31}},"error":null}
{"id":"vllm-42e3d09b14b04568afa3f1797751a267","custom_id":"request-2","response":{"id":"cmpl-f44d049f6b3a42d4b2d7850bb1e31bcc","object":"chat.completion","created":1715633336,"model":"meta-llama/Meta-Llama-3-8B-Instruct","choices":[{"index":0,"message":{"role":"assistant","content":"*silence*"},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":27,"total_tokens":32,"completion_tokens":5}},"error":null}
```
## Example 2: Using remote files
The batch runner supports remote input and output urls that are accessible via http/https.
For example, to run against our example input file located at `https://raw.githubusercontent.com/vllm-project/vllm/main/examples/openai_example_batch.jsonl`, you can run
```
python -m vllm.entrypoints.openai.run_batch -i https://raw.githubusercontent.com/vllm-project/vllm/main/examples/openai_example_batch.jsonl -o results.jsonl --model meta-llama/Meta-Llama-3-8B-Instruct
```
## Example 3: Integrating with AWS S3
To integrate with cloud blob storage, we recommend using presigned urls.
[Learn more about S3 presigned urls here]
### Additional prerequisites
* [Create an S3 bucket](https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html).
* The `awscli` package (Run `pip install awscli`) to configure your credentials and interactively use s3.
- [Configure your credentials](https://docs.aws.amazon.com/cli/latest/userguide/getting-started-quickstart.html).
* The `boto3` python package (Run `pip install boto3`) to generate presigned urls.
### Step 1: Upload your input script
To follow along with this example, you can download the example batch, or create your own batch file in your working directory.
```
wget https://raw.githubusercontent.com/vllm-project/vllm/main/examples/openai_example_batch.jsonl
```
Once you've created your batch file it should look like this
```
$ cat openai_example_batch.jsonl
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
```
Now upload your batch file to your S3 bucket.
```
aws s3 cp openai_example_batch.jsonl s3://MY_BUCKET/MY_INPUT_FILE.jsonl
```
### Step 2: Generate your presigned urls
Presigned put urls can only be generated via the SDK. You can run the following python script to generate your presigned urls. Be sure to replace the `MY_BUCKET`, `MY_INPUT_FILE.jsonl`, and `MY_OUTPUT_FILE.jsonl` placeholders with your bucket and file names.
(The script is adapted from https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/python/example_code/s3/s3_basics/presigned_url.py)
```
import boto3
from botocore.exceptions import ClientError
def generate_presigned_url(s3_client, client_method, method_parameters, expires_in):
"""
Generate a presigned Amazon S3 URL that can be used to perform an action.
:param s3_client: A Boto3 Amazon S3 client.
:param client_method: The name of the client method that the URL performs.
:param method_parameters: The parameters of the specified client method.
:param expires_in: The number of seconds the presigned URL is valid for.
:return: The presigned URL.
"""
try:
url = s3_client.generate_presigned_url(
ClientMethod=client_method, Params=method_parameters, ExpiresIn=expires_in
)
except ClientError:
raise
return url
s3_client = boto3.client("s3")
input_url = generate_presigned_url(
s3_client, "get_object", {"Bucket": "MY_BUCKET", "Key": "MY_INPUT_FILE.jsonl"}, 3600
)
output_url = generate_presigned_url(
s3_client, "put_object", {"Bucket": "MY_BUCKET", "Key": "MY_OUTPUT_FILE.jsonl"}, 3600
)
print(f"{input_url=}")
print(f"{output_url=}")
```
This script should output
```
input_url='https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_INPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091'
output_url='https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_OUTPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091'
```
### Step 3: Run the batch runner using your presigned urls
You can now run the batch runner, using the urls generated in the previous section.
```
python -m vllm.entrypoints.openai.run_batch \
-i "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_INPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \
-o "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_OUTPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \
--model --model meta-llama/Meta-Llama-3-8B-Instruct
```
### Step 4: View your results
Your results are now on S3. You can view them in your terminal by running
```
aws s3 cp s3://MY_BUCKET/MY_OUTPUT_FILE.jsonl -
```

View File

@ -0,0 +1,2 @@
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}

View File

@ -8,6 +8,7 @@ py-cpuinfo
transformers >= 4.40.0 # Required for StarCoder2 & Llava, Llama 3.
tokenizers >= 0.19.1 # Required for Llama 3.
fastapi
aiohttp
openai
uvicorn[standard]
pydantic >= 2.0 # Required for OpenAI server.

View File

@ -0,0 +1,53 @@
import subprocess
import sys
import tempfile
from vllm.entrypoints.openai.protocol import BatchRequestOutput
# ruff: noqa: E501
INPUT_BATCH = """{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}"""
INVALID_INPUT_BATCH = """{"invalid_field": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "NousResearch/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_tokens": 1000}}"""
def test_e2e():
with tempfile.NamedTemporaryFile(
"w") as input_file, tempfile.NamedTemporaryFile(
"r") as output_file:
input_file.write(INPUT_BATCH)
input_file.flush()
proc = subprocess.Popen([
sys.executable, "-m", "vllm.entrypoints.openai.run_batch", "-i",
input_file.name, "-o", output_file.name, "--model",
"NousResearch/Meta-Llama-3-8B-Instruct"
], )
proc.communicate()
proc.wait()
assert proc.returncode == 0, f"{proc=}"
contents = output_file.read()
for line in contents.strip().split("\n"):
# Ensure that the output format conforms to the openai api.
# Validation should throw if the schema is wrong.
BatchRequestOutput.model_validate_json(line)
def test_e2e_invalid_input():
"""
Ensure that we fail when the input doesn't conform to the openai api.
"""
with tempfile.NamedTemporaryFile(
"w") as input_file, tempfile.NamedTemporaryFile(
"r") as output_file:
input_file.write(INVALID_INPUT_BATCH)
input_file.flush()
proc = subprocess.Popen([
sys.executable, "-m", "vllm.entrypoints.openai.run_batch", "-i",
input_file.name, "-o", output_file.name, "--model",
"NousResearch/Meta-Llama-3-8B-Instruct"
], )
proc.communicate()
proc.wait()
assert proc.returncode != 0, f"{proc=}"

View File

@ -526,3 +526,44 @@ class ChatCompletionStreamResponse(OpenAIBaseModel):
model: str
choices: List[ChatCompletionResponseStreamChoice]
usage: Optional[UsageInfo] = Field(default=None)
class BatchRequestInput(OpenAIBaseModel):
"""
The per-line object of the batch input file.
NOTE: Currently only the `/v1/chat/completions` endpoint is supported.
"""
# A developer-provided per-request id that will be used to match outputs to
# inputs. Must be unique for each request in a batch.
custom_id: str
# The HTTP method to be used for the request. Currently only POST is
# supported.
method: str
# The OpenAI API relative URL to be used for the request. Currently
# /v1/chat/completions is supported.
url: str
# The parameteters of the request.
body: Union[ChatCompletionRequest, ]
class BatchRequestOutput(OpenAIBaseModel):
"""
The per-line object of the batch output and error files
"""
id: str
# A developer-provided per-request id that will be used to match outputs to
# inputs.
custom_id: str
response: Optional[ChatCompletionResponse]
# For requests that failed with a non-HTTP error, this will contain more
# information on the cause of the failure.
error: Optional[Any]

View File

@ -0,0 +1,141 @@
import argparse
import asyncio
import sys
from io import StringIO
import aiohttp
import vllm
from vllm.engine.arg_utils import AsyncEngineArgs, nullable_str
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (BatchRequestInput,
BatchRequestOutput,
ChatCompletionResponse)
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.logger import init_logger
from vllm.usage.usage_lib import UsageContext
from vllm.utils import random_uuid
logger = init_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(
description="vLLM OpenAI-Compatible batch runner.")
parser.add_argument(
"-i",
"--input-file",
required=True,
type=str,
help=
"The path or url to a single input file. Currently supports local file "
"paths, or the http protocol (http or https). If a URL is specified, "
"the file should be available via HTTP GET.")
parser.add_argument(
"-o",
"--output-file",
required=True,
type=str,
help="The path or url to a single output file. Currently supports "
"local file paths, or web (http or https) urls. If a URL is specified,"
" the file should be available via HTTP PUT.")
parser.add_argument("--response-role",
type=nullable_str,
default="assistant",
help="The role name to return if "
"`request.add_generation_prompt=true`.")
parser = AsyncEngineArgs.add_cli_args(parser)
return parser.parse_args()
async def read_file(path_or_url: str) -> str:
if path_or_url.startswith("http://") or path_or_url.startswith("https://"):
async with aiohttp.ClientSession() as session, \
session.get(path_or_url) as resp:
return await resp.text()
else:
with open(path_or_url, "r") as f:
return f.read()
async def write_file(path_or_url: str, data: str) -> None:
if path_or_url.startswith("http://") or path_or_url.startswith("https://"):
async with aiohttp.ClientSession() as session, \
session.put(path_or_url, data=data.encode("utf-8")):
pass
else:
# We should make this async, but as long as this is always run as a
# standalone program, blocking the event loop won't effect performance
# in this particular case.
with open(path_or_url, "w") as f:
f.write(data)
async def run_request(chat_serving: OpenAIServingChat,
request: BatchRequestInput) -> BatchRequestOutput:
chat_request = request.body
chat_response = await chat_serving.create_chat_completion(chat_request)
if isinstance(chat_response, ChatCompletionResponse):
batch_output = BatchRequestOutput(
id=f"vllm-{random_uuid()}",
custom_id=request.custom_id,
response=chat_response,
error=None,
)
else:
batch_output = BatchRequestOutput(
id=f"vllm-{random_uuid()}",
custom_id=request.custom_id,
response=None,
error=chat_response,
)
return batch_output
async def main(args):
if args.served_model_name is not None:
served_model_names = args.served_model_name
else:
served_model_names = [args.model]
engine_args = AsyncEngineArgs.from_cli_args(args)
engine = AsyncLLMEngine.from_engine_args(
engine_args, usage_context=UsageContext.OPENAI_API_SERVER)
# When using single vLLM without engine_use_ray
model_config = await engine.get_model_config()
openai_serving_chat = OpenAIServingChat(
engine,
model_config,
served_model_names,
args.response_role,
)
# Submit all requests in the file to the engine "concurrently".
response_futures = []
for request_json in (await read_file(args.input_file)).strip().split("\n"):
request = BatchRequestInput.model_validate_json(request_json)
response_futures.append(run_request(openai_serving_chat, request))
responses = await asyncio.gather(*response_futures)
output_buffer = StringIO()
for response in responses:
print(response.model_dump_json(), file=output_buffer)
output_buffer.seek(0)
await write_file(args.output_file, output_buffer.read().strip())
# Temporary workaround for https://github.com/vllm-project/vllm/issues/4789
sys.exit(0)
if __name__ == "__main__":
args = parse_args()
logger.info("vLLM API server version %s", vllm.__version__)
logger.info("args: %s", args)
asyncio.run(main(args))

View File

@ -119,7 +119,9 @@ class OpenAIServingChat(OpenAIServing):
return self._parse_chat_message_content_parts(role, content)
async def create_chat_completion(
self, request: ChatCompletionRequest, raw_request: Request
self,
request: ChatCompletionRequest,
raw_request: Optional[Request] = None
) -> Union[ErrorResponse, AsyncGenerator[str, None],
ChatCompletionResponse]:
"""Completion API similar to OpenAI's API.
@ -337,7 +339,7 @@ class OpenAIServingChat(OpenAIServing):
yield "data: [DONE]\n\n"
async def chat_completion_full_generator(
self, request: ChatCompletionRequest, raw_request: Request,
self, request: ChatCompletionRequest, raw_request: Optional[Request],
result_generator: AsyncIterator[RequestOutput], request_id: str,
conversation: List[ConversationMessage]
) -> Union[ErrorResponse, ChatCompletionResponse]:
@ -347,7 +349,7 @@ class OpenAIServingChat(OpenAIServing):
final_res: Optional[RequestOutput] = None
async for res in result_generator:
if await raw_request.is_disconnected():
if raw_request is not None and await raw_request.is_disconnected():
# Abort the request if the client disconnects.
await self.engine.abort(request_id)
return self.create_error_response("Client disconnected")