[VLM] Avoid unnecessary dummy multimodal data during processing (#16416)

Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
Cyrus Leung 2025-04-11 03:32:14 +08:00 committed by GitHub
parent dd143ef541
commit 56d4aefa33
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
33 changed files with 436 additions and 394 deletions

View File

@ -21,12 +21,13 @@ from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import MultiModalDataItems
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
# yapf: disable
@ -415,31 +416,31 @@ class AriaProcessingInfo(BaseProcessingInfo):
class AriaDummyInputsBuilder(BaseDummyInputsBuilder[AriaProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token: str = processor.tokenizer.image_token # type: ignore
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
vision_config = self.info.get_vision_config()
max_image_size = vision_config.image_size
num_images = mm_counts.get("image", 0)
mm_data = {
return {
"image":
self._get_dummy_images(width=max_image_size,
height=max_image_size,
num_images=num_images)
}
hf_processor = self.info.get_hf_processor()
image_token: str = hf_processor.tokenizer.image_token # type: ignore
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
class AriaMultiModalProcessor(BaseMultiModalProcessor[AriaProcessingInfo]):

View File

@ -20,7 +20,7 @@ from vllm.jsontree import json_map_leaves
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalKwargs
from vllm.multimodal.inputs import MultiModalDataDict, MultiModalKwargs
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
@ -28,7 +28,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
MultiModalFieldConfig,
PromptReplacement, PromptUpdate,
PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
@ -146,28 +146,29 @@ class AyaVisionProcessingInfo(BaseProcessingInfo):
class AyaVisionDummyInputsBuilder(
BaseDummyInputsBuilder[AyaVisionProcessingInfo]):
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
image_size = \
self.info.get_image_size_with_most_features()
mm_data = {
return {
"image":
self._get_dummy_images(width=image_size.width,
height=image_size.height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
class AyaVisionMultiModalProcessor(

View File

@ -15,12 +15,13 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import MultiModalDataItems
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptIndexTargets,
PromptInsertion, PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .blip import BlipVisionModel
@ -413,29 +414,27 @@ class Blip2ProcessingInfo(BaseProcessingInfo):
class Blip2DummyInputsBuilder(BaseDummyInputsBuilder[Blip2ProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
return ""
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
hf_config = self.info.get_hf_config()
vision_config = hf_config.vision_config
max_image_size = vision_config.image_size
num_images = mm_counts.get("image", 0)
mm_data = {
return {
"image":
self._get_dummy_images(width=max_image_size,
height=max_image_size,
num_images=num_images)
}
return ProcessorInputs(
prompt_text="",
mm_data=mm_data,
)
class Blip2MultiModalProcessor(BaseMultiModalProcessor[Blip2ProcessingInfo]):

View File

@ -30,12 +30,13 @@ from vllm.model_executor.model_loader.weight_utils import (
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.model_executor.utils import set_weight_attrs
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import MultiModalDataItems
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .interfaces import (MultiModalEmbeddings, SupportsMultiModal, SupportsPP,
@ -72,28 +73,31 @@ class ChameleonProcessingInfo(BaseProcessingInfo):
class ChameleonDummyInputsBuilder(
BaseDummyInputsBuilder[ChameleonProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
config = self.info.get_hf_config()
width = height = config.vq_config.resolution
num_images = mm_counts.get("image", 0)
mm_data = {
return {
"image":
self._get_dummy_images(width=width,
height=height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text="<image>" * num_images,
mm_data=mm_data,
)
class ChameleonMultiModalProcessor(
BaseMultiModalProcessor[ChameleonProcessingInfo]):

View File

@ -19,14 +19,14 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
NestedTensors)
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs, NestedTensors)
from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems,
ImageSize, MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.deepseek_vl2 import (DeepseekVLV2Config,
MlpProjectorConfig,
@ -172,29 +172,30 @@ class DeepseekVL2ProcessingInfo(BaseProcessingInfo):
class DeepseekVL2DummyInputsBuilder(
BaseDummyInputsBuilder[DeepseekVL2ProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
hf_processor = self.info.get_hf_processor()
image_token: str = hf_processor.image_token
max_image_size = self.info.get_image_size_with_most_features()
mm_data = {
return {
"image":
self._get_dummy_images(width=max_image_size.width,
height=max_image_size.height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
class DeepseekVL2MultiModalProcessor(
BaseMultiModalProcessor[DeepseekVL2ProcessingInfo]):

View File

@ -21,13 +21,14 @@ from vllm.model_executor.models.bart import (BartDecoder, BartEncoder,
BartScaledWordEmbedding)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.parse import MultiModalDataDict, MultiModalDataItems
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import MultiModalDataItems
from vllm.multimodal.processing import (BaseProcessingInfo,
EncDecMultiModalProcessor,
PromptIndexTargets, PromptInsertion,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .interfaces import (MultiModalEmbeddings, SupportsMultiModal,
@ -772,27 +773,25 @@ class Florence2ProcessingInfo(BaseProcessingInfo):
class Florence2DummyInputsBuilder(
BaseDummyInputsBuilder[Florence2ProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
return ""
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width = target_height = self.info.get_hf_config().projection_dim
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text="",
mm_data=mm_data,
)
class Florence2MultiModalProcessor(
EncDecMultiModalProcessor[Florence2ProcessingInfo]):

View File

@ -31,13 +31,14 @@ from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.model_executor.models.persimmon import PersimmonForCausalLM
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
@ -125,27 +126,25 @@ class FuyuProcessingInfo(BaseProcessingInfo):
class FuyuDummyInputsBuilder(BaseDummyInputsBuilder[FuyuProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
return ""
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
target_width, target_height = \
self.info.get_image_size_with_most_features()
num_images = mm_counts.get("image", 0)
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text="",
mm_data=mm_data,
)
class FuyuMultiModalProcessor(BaseMultiModalProcessor[FuyuProcessingInfo]):

View File

@ -15,8 +15,9 @@ from vllm.model_executor.layers.layernorm import GemmaRMSNorm
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.multimodal.inputs import MultiModalFieldConfig
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
MultiModalDataItems)
# yapf: disable
@ -28,7 +29,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
find_mm_placeholders,
replace_token_matches)
# yapf: enable
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
@ -224,31 +225,31 @@ class Gemma3ProcessingInfo(BaseProcessingInfo):
class Gemma3DummyInputsBuilder(BaseDummyInputsBuilder[Gemma3ProcessingInfo]):
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.boi_token
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width, target_height = \
self.info.get_image_size_with_most_features()
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
class Gemma3MultiModalProcessor(BaseMultiModalProcessor[Gemma3ProcessingInfo]):

View File

@ -12,7 +12,7 @@ from torch import nn
from torch.nn import LayerNorm
from torchvision import transforms
from torchvision.transforms import InterpolationMode
from transformers import PreTrainedTokenizer, TensorType
from transformers import BatchFeature, PreTrainedTokenizer, TensorType
from transformers.image_utils import ImageInput
from transformers.tokenization_utils_base import TextInput
@ -28,13 +28,13 @@ from vllm.model_executor.layers.linear import (ColumnParallelLinear,
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import MultiModalDataItems
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, BatchFeature,
MultiModalFieldConfig,
PromptReplacement, PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
BaseProcessingInfo, PromptReplacement,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs import ChatGLMConfig
@ -447,31 +447,31 @@ class GLM4VProcessingInfo(BaseProcessingInfo):
class GLM4VDummyInputsBuilder(BaseDummyInputsBuilder[GLM4VProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
base_text = "<|begin_of_image|><|endoftext|><|end_of_image|>"
return base_text * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
hf_config = self.info.get_hf_config()
vision_config = hf_config.vision_config
target_width = target_height = vision_config["image_size"]
num_images = mm_counts.get("image", 0)
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
base_text = "<|begin_of_image|><|endoftext|><|end_of_image|>"
return ProcessorInputs(
prompt_text=base_text * num_images,
mm_data=mm_data,
)
class GLM4VMultiModalProcessor(BaseMultiModalProcessor[GLM4VProcessingInfo]):

View File

@ -32,18 +32,18 @@ from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import ImageProcessorItems, ImageSize
# yapf conflicts with isort for this block
# yapf: disable
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo,
MultiModalDataItems,
MultiModalFieldConfig,
PromptReplacement, PromptUpdate,
PromptUpdateDetails)
MultiModalDataItems, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
# yapf: enable
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
# yapf: disable
@ -284,29 +284,31 @@ class Idefics3ProcessingInfo(BaseProcessingInfo):
class Idefics3DummyInputsBuilder(BaseDummyInputsBuilder[Idefics3ProcessingInfo]
):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token, _, _ = self.info._get_image_token(processor)
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
hf_processor = self.info.get_hf_processor()
image_processor: Idefics3ImageProcessor = hf_processor.image_processor
longest_edge = image_processor.max_image_size['longest_edge']
image_token, _, _ = self.info._get_image_token(hf_processor)
mm_data = {
return {
"image":
self._get_dummy_images(width=longest_edge,
height=longest_edge,
num_images=num_images)
}
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
class Idefics3MultiModalProcessor(
BaseMultiModalProcessor[Idefics3ProcessingInfo]):

View File

@ -25,14 +25,14 @@ from vllm.model_executor.models.intern_vit import (InternVisionModel,
InternVisionPatchModel)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
NestedTensors)
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs, NestedTensors)
from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems,
ImageSize, MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.tokenizer import AnyTokenizer
@ -504,27 +504,27 @@ _I = TypeVar("_I", bound=BaseInternVLProcessingInfo)
class InternVLDummyInputsBuilder(BaseDummyInputsBuilder[_I]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
return "<image>" * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
target_width, target_height = \
self.info.get_image_size_with_most_features()
num_images = mm_counts.get("image", 0)
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text="<image>" * num_images,
mm_data=mm_data,
)
class InternVLMultiModalProcessor(BaseMultiModalProcessor[_I]):

View File

@ -34,7 +34,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, ProcessingCache,
PromptReplacement, PromptUpdate,
PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .clip import CLIPVisionModel
@ -186,30 +186,31 @@ _I = TypeVar("_I", bound=BaseLlavaProcessingInfo)
class LlavaDummyInputsBuilder(BaseDummyInputsBuilder[_I]):
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width, target_height = \
self.info.get_image_size_with_most_features()
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
class LlavaProcessingInfo(BaseLlavaProcessingInfo):

View File

@ -16,13 +16,14 @@ from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.models.clip import CLIPVisionModel
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import (ImageSize, MultiModalDataItems,
VideoEmbeddingItems, VideoProcessorItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.utils import is_list_of
@ -130,22 +131,27 @@ class LlavaNextVideoProcessingInfo(BaseProcessingInfo):
class LlavaNextVideoDummyInputsBuilder(
BaseDummyInputsBuilder[LlavaNextVideoProcessingInfo]):
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_videos = mm_counts.get("video", 0)
processor = self.info.get_hf_processor()
video_token = processor.video_token
return video_token * num_videos
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_videos = mm_counts.get("video", 0)
target_width, target_height = \
self.info.get_image_size_with_most_features()
target_num_frames = \
self.info.get_num_frames_with_most_features(seq_len, mm_counts)
mm_data = {
return {
"video":
self._get_dummy_videos(
width=target_width,
@ -155,11 +161,6 @@ class LlavaNextVideoDummyInputsBuilder(
)
}
return ProcessorInputs(
prompt_text=video_token * num_videos,
mm_data=mm_data,
)
class LlavaNextVideoMultiModalProcessor(
BaseMultiModalProcessor[LlavaNextVideoProcessingInfo]):

View File

@ -19,11 +19,11 @@ from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import (ImageSize, MultiModalDataItems,
VideoEmbeddingItems, VideoProcessorItems)
from vllm.multimodal.processing import PromptReplacement, PromptUpdate
from vllm.multimodal.profiling import ProcessorInputs
from vllm.sequence import IntermediateTensors
from .clip import CLIPVisionModel
@ -226,11 +226,7 @@ class LlavaOnevisionProcessingInfo(LlavaNextProcessingInfo):
class LlavaOnevisionDummyInputsBuilder(
LlavaDummyInputsBuilder[LlavaOnevisionProcessingInfo]):
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
num_videos = mm_counts.get("video", 0)
@ -238,13 +234,23 @@ class LlavaOnevisionDummyInputsBuilder(
image_token = processor.image_token
video_token = processor.video_token
return image_token * num_images + video_token * num_videos
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
num_videos = mm_counts.get("video", 0)
target_width, target_height = \
self.info.get_image_size_with_most_features()
target_num_frames = \
self.info.get_num_frames_with_most_features(seq_len,
mm_counts)
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
@ -258,11 +264,6 @@ class LlavaOnevisionDummyInputsBuilder(
)
}
return ProcessorInputs(
prompt_text=image_token * num_images + video_token * num_videos,
mm_data=mm_data,
)
class LlavaOnevisionMultiModalProcessor(
BaseLlavaNextMultiModalProcessor[LlavaOnevisionProcessingInfo]):

View File

@ -35,14 +35,14 @@ from transformers.models.whisper.modeling_whisper import (
from vllm.config import VllmConfig
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.multimodal.inputs import MultiModalFieldConfig, NestedTensors
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
NestedTensors)
from vllm.multimodal.parse import (AudioItem, AudioProcessorItems,
DictEmbeddingItems, ModalityData,
ModalityDataItems, MultiModalDataItems,
MultiModalDataParser)
from vllm.multimodal.processing import (PromptReplacement, PromptUpdate,
PromptUpdateDetails)
from vllm.multimodal.profiling import ProcessorInputs
from .minicpmv import (_MAX_FRAMES_PER_VIDEO, MiniCPMV2_6,
MiniCPMVDummyInputsBuilder,
@ -206,29 +206,31 @@ class MiniCPMOProcessingInfo(MiniCPMVProcessingInfo):
class MiniCPMODummyInputsBuilder(
MiniCPMVDummyInputsBuilder[MiniCPMOProcessingInfo]):
def get_dummy_processor_inputs(
self, seq_len: int, mm_counts: Mapping[str,
int]) -> ProcessorInputs:
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_audios = mm_counts.get("audio", 0)
audio_prompt_texts = self.info.audio_pattern * num_audios
return super().get_dummy_text(mm_counts) + audio_prompt_texts
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_audios = mm_counts.get("audio", 0)
audio_len = self.info.get_max_audio_chunks_with_most_features() * \
self.info.get_default_audio_sampling_rate()
processor_inputs = super().get_dummy_processor_inputs(
seq_len, mm_counts)
audio_prompt_texts = self.info.audio_pattern * num_audios
audio_mm_data = {
"audio":
self._get_dummy_audios(length=audio_len, num_audios=num_audios)
}
return ProcessorInputs(
prompt_text=processor_inputs.prompt_text + audio_prompt_texts,
mm_data={
**processor_inputs.mm_data,
**audio_mm_data,
},
)
return {
**super().get_dummy_mm_data(seq_len, mm_counts),
**audio_mm_data,
}
class MiniCPMOMultiModalProcessor(

View File

@ -48,7 +48,8 @@ from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.models.qwen2 import Qwen2ForCausalLM
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.multimodal.inputs import MultiModalFieldConfig, NestedTensors
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
NestedTensors)
from vllm.multimodal.parse import (DictEmbeddingItems, ImageItem,
ImageProcessorItems, ImageSize,
ModalityData, ModalityDataItems,
@ -57,7 +58,7 @@ from vllm.multimodal.parse import (DictEmbeddingItems, ImageItem,
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.platforms import current_platform
from vllm.sequence import IntermediateTensors
from vllm.utils import flatten_2d_lists
@ -471,11 +472,20 @@ _I = TypeVar("_I",
class MiniCPMVDummyInputsBuilder(BaseDummyInputsBuilder[_I]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
num_videos = mm_counts.get("video", 0)
image_prompt_texts = self.info.image_pattern * num_images
video_prompt_texts = self.info.video_pattern * num_videos
return image_prompt_texts + video_prompt_texts
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
num_videos = mm_counts.get("video", 0)
@ -486,7 +496,7 @@ class MiniCPMVDummyInputsBuilder(BaseDummyInputsBuilder[_I]):
num_video_frames = \
self.info.get_num_frames_with_most_features(seq_len, mm_counts)
mm_data = {
return {
"image":
self._get_dummy_images(width=image_width,
height=image_height,
@ -498,13 +508,6 @@ class MiniCPMVDummyInputsBuilder(BaseDummyInputsBuilder[_I]):
] * num_videos,
}
image_prompt_texts = self.info.image_pattern * num_images
video_prompt_texts = self.info.video_pattern * num_videos
return ProcessorInputs(prompt_text=image_prompt_texts +
video_prompt_texts,
mm_data=mm_data)
class MiniCPMVMultiModalProcessor(BaseMultiModalProcessor[_I]):

View File

@ -22,14 +22,15 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, ProcessingCache,
PromptReplacement, PromptUpdate,
PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
@ -185,30 +186,31 @@ _I = TypeVar("_I", bound=BaseLlavaProcessingInfo)
class Mistral3DummyInputsBuilder(BaseDummyInputsBuilder[_I]):
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width, target_height = \
self.info.get_image_size_with_most_features()
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
class Mistral3ProcessingInfo(BaseLlavaProcessingInfo):

View File

@ -54,14 +54,14 @@ from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalEncDecInputs,
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalEncDecInputs,
MultiModalFieldConfig, MultiModalKwargs)
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
MultiModalDataDict, MultiModalDataItems)
MultiModalDataItems)
from vllm.multimodal.processing import (BaseProcessingInfo,
EncDecMultiModalProcessor,
PromptReplacement, PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from .clip import CLIPMLP
from .interfaces import SupportsMultiModal, SupportsV0Only
@ -131,31 +131,31 @@ class MllamaProcessingInfo(BaseProcessingInfo):
class MllamaDummyInputsBuilder(BaseDummyInputsBuilder[MllamaProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width, target_height = \
self.info.get_image_size_with_most_features()
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
hf_processor = self.info.get_hf_processor()
image_token: str = hf_processor.image_token
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
class MllamaMultiModalProcessor(EncDecMultiModalProcessor[MllamaProcessingInfo]
):

View File

@ -43,14 +43,14 @@ from vllm.model_executor.model_loader.loader import _initialize_model
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
NestedTensors)
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs, NestedTensors)
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
@ -619,29 +619,31 @@ class Mllama4MultiModalProcessor(BaseMultiModalProcessor[Mllama4ProcessingInfo]
class Mllama4DummyInputsBuilder(BaseDummyInputsBuilder[Mllama4ProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.fake_image_token
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
(target_width,
target_height) = self.info.get_image_size_with_most_features()
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
image_token = self.info.get_hf_processor().fake_image_token
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
@MULTIMODAL_REGISTRY.register_processor(
Mllama4MultiModalProcessor,

View File

@ -41,14 +41,15 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptIndexTargets,
PromptInsertion, PromptUpdate,
PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
@ -1216,27 +1217,25 @@ class MolmoProcessingInfo(BaseProcessingInfo):
class MolmoDummyInputsBuilder(BaseDummyInputsBuilder[MolmoProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
return ""
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
target_width, target_height = \
self.info.get_image_size_with_most_features()
num_images = mm_counts.get("image", 0)
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text="",
mm_data=mm_data,
)
class MolmoMultiModalProcessor(BaseMultiModalProcessor[MolmoProcessingInfo]):

View File

@ -15,12 +15,11 @@ from transformers import PretrainedConfig
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalKwargs
from vllm.multimodal.inputs import MultiModalDataDict, MultiModalKwargs
from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems,
MultiModalDataItems)
from vllm.multimodal.processing import (PromptReplacement, PromptUpdate,
PromptUpdateDetails)
from vllm.multimodal.profiling import ProcessorInputs
from .intern_vit import InternVisionModel
from .internvl import (BaseInternVLProcessingInfo, BaseInternVLProcessor,
@ -87,29 +86,29 @@ class NVLMProcessingInfo(BaseInternVLProcessingInfo):
class NVLMDummyInputsBuilder(InternVLDummyInputsBuilder[NVLMProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
# The newline is necessary to separate ">" of the current item
# and "<" of the next item
return "<image>\n" * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
target_width, target_height = \
self.info.get_image_size_with_most_features()
num_images = mm_counts.get("image", 0)
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
# The newline is necessary to separate ">" of the current item
# and "<" of the next item
prompt_text="<image>\n" * num_images,
mm_data=mm_data,
)
class NVLMMultiModalProcessor(InternVLMultiModalProcessor[NVLMProcessingInfo]):

View File

@ -19,7 +19,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptIndexTargets,
PromptInsertion, PromptUpdate,
PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
@ -90,29 +90,27 @@ class PaliGemmaProcessingInfo(BaseProcessingInfo):
class PaliGemmaDummyInputsBuilder(
BaseDummyInputsBuilder[PaliGemmaProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
return ""
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
hf_config = self.info.get_hf_config()
vision_config = hf_config.vision_config
max_image_size = vision_config.image_size
num_images = mm_counts.get("image", 0)
mm_data = {
return {
"image":
self._get_dummy_images(width=max_image_size,
height=max_image_size,
num_images=num_images)
}
return ProcessorInputs(
prompt_text="",
mm_data=mm_data,
)
class PaliGemmaMultiModalProcessor(
BaseMultiModalProcessor[PaliGemmaProcessingInfo]):

View File

@ -32,7 +32,8 @@ from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems,
ImageSize, MultiModalDataItems)
# yapf conflicts with isort for this block
@ -42,7 +43,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
PlaceholderFeaturesInfo,
PromptReplacement, PromptUpdate)
# yapf: enable
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.utils import is_list_of
@ -343,31 +344,31 @@ class Phi3VProcessingInfo(BaseProcessingInfo):
class Phi3VDummyInputsBuilder(BaseDummyInputsBuilder[Phi3VProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
hf_processor = self.info.get_hf_processor()
image_tokens: list[str] = hf_processor.img_tokens # type: ignore
return "".join(image_tokens[:num_images])
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width, target_height = \
self.info.get_image_size_with_most_features()
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
hf_processor = self.info.get_hf_processor()
image_tokens: list[str] = hf_processor.img_tokens # type: ignore
return ProcessorInputs(
prompt_text="".join(image_tokens[:num_images]),
mm_data=mm_data,
)
class Phi3VMultiModalProcessor(BaseMultiModalProcessor[Phi3VProcessingInfo]):

View File

@ -32,13 +32,14 @@ from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.multimodal.inputs import MultiModalFieldConfig, NestedTensors
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
NestedTensors)
from vllm.multimodal.parse import (ImageProcessorItems, ImageSize,
MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.tokenizer import (MistralTokenizer,
cached_tokenizer_from_config)
@ -203,28 +204,26 @@ class PixtralProcessingInfo(BaseProcessingInfo):
class PixtralDummyInputsBuilder(BaseDummyInputsBuilder[PixtralProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
return ""
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width, target_height = \
self.info.get_image_size_with_most_features()
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text="",
mm_data=mm_data,
)
class PixtralMultiModalProcessor(BaseMultiModalProcessor[PixtralProcessingInfo]
):

View File

@ -35,7 +35,7 @@ from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
from vllm.multimodal.parse import MultiModalDataItems
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import (IntermediateTensors, PoolerOutput,
PoolingSequenceGroupOutput)
@ -49,20 +49,21 @@ class PrithviGeoSpatialMAEProcessingInfo(BaseProcessingInfo):
class PrithviGeoSpatialMAEInputBuilder(
BaseDummyInputsBuilder[PrithviGeoSpatialMAEProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
return ""
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
return ProcessorInputs(
prompt_text="",
# This model input is fixed and is in the form of a torch Tensor.
# The size of pixel_values might change in the cases where we resize
# the input but never exceeds the dimensions below.
mm_data={
"pixel_values": torch.full((1, 6, 512, 512), 1.0),
"location_coords": torch.full((1, 2), 1.0)
})
) -> MultiModalDataDict:
# This model input is fixed and is in the form of a torch Tensor.
# The size of pixel_values might change in the cases where we resize
# the input but never exceeds the dimensions below.
return {
"pixel_values": torch.full((1, 6, 512, 512), 1.0),
"location_coords": torch.full((1, 2), 1.0),
}
class PrithviGeoSpatialMAEMultiModalProcessor(BaseMultiModalProcessor):

View File

@ -37,13 +37,14 @@ from vllm.config import VllmConfig
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import (AudioProcessorItems, MultiModalDataItems,
MultiModalDataParser)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
@ -113,27 +114,30 @@ class Qwen2AudioProcessingInfo(BaseProcessingInfo):
class Qwen2AudioDummyInputsBuilder(
BaseDummyInputsBuilder[Qwen2AudioProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_audios = mm_counts.get("audio", 0)
hf_processor = self.info.get_hf_processor()
audio_token = hf_processor.audio_token
return audio_token * num_audios
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
feature_extractor = self.info.get_feature_extractor()
sampling_rate = feature_extractor.sampling_rate
audio_len = feature_extractor.chunk_length * sampling_rate
num_audios = mm_counts.get("audio", 0)
mm_data = {
return {
"audio":
self._get_dummy_audios(length=audio_len, num_audios=num_audios)
}
return ProcessorInputs(
prompt_text="<|AUDIO|>" * num_audios,
mm_data=mm_data,
)
class Qwen2AudioMultiModalProcessor(
BaseMultiModalProcessor[Qwen2AudioProcessingInfo]):

View File

@ -56,15 +56,15 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (ImageItem, ModalityData,
MultiModalFieldConfig, MultiModalKwargs,
VideoItem)
MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs, VideoItem)
from vllm.multimodal.parse import (DictEmbeddingItems, ImageSize,
ModalityDataItems, MultiModalDataItems,
MultiModalDataParser)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.platforms import _Backend
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.config import uses_mrope
@ -965,11 +965,7 @@ class Qwen2VLProcessingInfo(BaseProcessingInfo):
class Qwen2VLDummyInputsBuilder(BaseDummyInputsBuilder[Qwen2VLProcessingInfo]):
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
num_videos = mm_counts.get("video", 0)
@ -977,12 +973,22 @@ class Qwen2VLDummyInputsBuilder(BaseDummyInputsBuilder[Qwen2VLProcessingInfo]):
image_token: str = hf_processor.image_token
video_token: str = hf_processor.video_token
return image_token * num_images + video_token * num_videos
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
num_videos = mm_counts.get("video", 0)
target_width, target_height = \
self.info.get_image_size_with_most_features()
target_num_frames = \
self.info.get_num_frames_with_most_features(seq_len, mm_counts)
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
@ -996,11 +1002,6 @@ class Qwen2VLDummyInputsBuilder(BaseDummyInputsBuilder[Qwen2VLProcessingInfo]):
)
}
return ProcessorInputs(
prompt_text=image_token * num_images + video_token * num_videos,
mm_data=mm_data,
)
class Qwen2VLMultiModalProcessor(BaseMultiModalProcessor[Qwen2VLProcessingInfo]
):

View File

@ -32,12 +32,13 @@ from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.resampler import Resampler2, get_abs_pos
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import MultiModalDataItems
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
@ -542,34 +543,34 @@ class QwenVLProcessingInfo(BaseProcessingInfo):
class QwenVLDummyInputsBuilder(BaseDummyInputsBuilder[QwenVLProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
hf_processor = self.info.get_hf_processor()
img_start = hf_processor.image_start_tag
img_end = hf_processor.image_end_tag
return "".join(f"Picture {i}: {img_start}{img_end}\n"
for i in range(1, num_images + 1))
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
hf_config = self.info.get_hf_config()
vision_config = hf_config.visual
processor = self.info.get_hf_processor()
img_start = processor.image_start_tag
img_end = processor.image_end_tag
target_width = target_height = vision_config["image_size"]
num_images = mm_counts.get("image", 0)
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text="".join(f"Picture {i}: {img_start}{img_end}\n"
for i in range(1, num_images + 1)),
mm_data=mm_data,
)
class QwenVLMultiModalProcessor(BaseMultiModalProcessor[QwenVLProcessingInfo]):

View File

@ -26,14 +26,14 @@ from vllm.model_executor.models.intern_vit import (InternVisionModel,
InternVisionPatchModel)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
NestedTensors)
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs, NestedTensors)
from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems,
ImageSize, MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.tokenizer import AnyTokenizer
@ -505,27 +505,27 @@ _I = TypeVar("_I", bound=BaseSkyworkR1VProcessingInfo)
class SkyworkR1VDummyInputsBuilder(BaseDummyInputsBuilder[_I]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
return "<image>" * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
target_width, target_height = \
self.info.get_image_size_with_most_features()
num_images = mm_counts.get("image", 0)
mm_data = {
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text="<image>" * num_images,
mm_data=mm_data,
)
class SkyworkR1VMultiModalProcessor(BaseMultiModalProcessor[_I]):

View File

@ -23,13 +23,13 @@ from vllm.model_executor.model_loader.loader import DefaultModelLoader
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
NestedTensors)
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs, NestedTensors)
from vllm.multimodal.parse import MultiModalDataItems, MultiModalDataParser
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.ultravox import UltravoxConfig
@ -110,11 +110,16 @@ class UltravoxProcessingInfo(BaseProcessingInfo):
class UltravoxDummyInputsBuilder(BaseDummyInputsBuilder[UltravoxProcessingInfo]
):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_audios = mm_counts.get("audio", 0)
return "<|audio|>" * num_audios
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
feature_extractor = self.info.get_feature_extractor()
sampling_rate = feature_extractor.sampling_rate
@ -122,16 +127,11 @@ class UltravoxDummyInputsBuilder(BaseDummyInputsBuilder[UltravoxProcessingInfo]
_MAX_ENCODER_BATCH_SIZE)
num_audios = mm_counts.get("audio", 0)
mm_data = {
return {
"audio":
self._get_dummy_audios(length=audio_len, num_audios=num_audios)
}
return ProcessorInputs(
prompt_text="<|audio|>" * num_audios,
mm_data=mm_data,
)
class UltravoxMultiModalProcessor(
BaseMultiModalProcessor[UltravoxProcessingInfo]):

View File

@ -26,13 +26,13 @@ from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY, NestedTensors
from vllm.multimodal.inputs import MultiModalFieldConfig, MultiModalKwargs
from vllm.multimodal.parse import (MultiModalDataDict, MultiModalDataItems,
MultiModalDataParser)
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import MultiModalDataItems, MultiModalDataParser
from vllm.multimodal.processing import (BaseProcessingInfo,
EncDecMultiModalProcessor,
PromptReplacement, PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from .interfaces import (MultiModalEmbeddings, SupportsMultiModal,
SupportsTranscription, SupportsV0Only)
@ -544,27 +544,27 @@ class WhisperProcessingInfo(BaseProcessingInfo):
class WhisperDummyInputsBuilder(BaseDummyInputsBuilder[WhisperProcessingInfo]):
def get_dummy_processor_inputs(
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_audios = mm_counts.get("audio", 0)
return "<|startoftranscript|>" * num_audios
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
) -> MultiModalDataDict:
feature_extractor = self.info.get_feature_extractor()
sampling_rate = feature_extractor.sampling_rate
audio_len = feature_extractor.chunk_length * sampling_rate
num_audios = mm_counts.get("audio", 0)
mm_data = {
return {
"audio":
self._get_dummy_audios(length=audio_len, num_audios=num_audios)
}
return ProcessorInputs(
prompt_text="<|startoftranscript|>" * num_audios,
mm_data=mm_data,
)
class WhisperMultiModalProcessor(
EncDecMultiModalProcessor[WhisperProcessingInfo]):

View File

@ -1051,12 +1051,6 @@ class BaseMultiModalProcessor(ABC, Generic[_I]):
*,
cache: Optional[ProcessingCache] = None,
enable_sanity_checks: bool = True) -> None:
if get_repls := getattr(self, "_get_prompt_replacements", None):
logger.warning_once("`_get_prompt_replacements` has been renamed "
"to `_get_prompt_updates`. The old name will "
"be removed in an upcoming release.")
self._get_prompt_updates = get_repls # type: ignore[method-assign]
super().__init__()
self.info = info
@ -1274,13 +1268,8 @@ class BaseMultiModalProcessor(ABC, Generic[_I]):
"""
mm_counts = mm_items.get_all_counts()
dummy_inputs = self.dummy_inputs.get_dummy_processor_inputs(
self.info.ctx.model_config.max_model_len,
mm_counts,
)
_, mm_kwargs, _ = self._apply_hf_processor_text_mm(
prompt_text=dummy_inputs.prompt_text,
prompt_text=self.dummy_inputs.get_dummy_text(mm_counts),
mm_items=mm_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
)

View File

@ -1,6 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
from abc import ABC, abstractmethod
from abc import ABC
from collections.abc import Mapping
from dataclasses import dataclass, field
from typing import Generic, NamedTuple, Optional, TypeVar, cast
@ -60,7 +60,35 @@ class BaseDummyInputsBuilder(ABC, Generic[_I]):
self.info = info
@abstractmethod
# TODO: @abstractmethod after transition
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
"""
Build the text input corresponding to :code:`mm_counts`.
"""
if (type(self).get_dummy_processor_inputs ==
BaseDummyInputsBuilder.get_dummy_processor_inputs):
raise NotImplementedError
logger.warning_once("`get_dummy_processor_inputs` has been split up "
"into `get_dummy_text` and `get_dummy_mm_data`. "
"These two methods will be marked as abstract "
"in an upcoming release.")
seq_len = self.info.ctx.model_config.max_model_len
return self.get_dummy_processor_inputs(seq_len, mm_counts).prompt_text
# TODO: @abstractmethod after transition
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
"""
Build the multimodal input which, after processing, results in
the maximum possible number of placeholder tokens.
"""
raise NotImplementedError
def get_dummy_processor_inputs(
self,
seq_len: int,
@ -70,7 +98,10 @@ class BaseDummyInputsBuilder(ABC, Generic[_I]):
Build the input which, after processing, results in
the maximum possible number of placeholder tokens.
"""
raise NotImplementedError
dummy_text = self.get_dummy_text(mm_counts)
dummy_mm_data = self.get_dummy_mm_data(seq_len, mm_counts)
return ProcessorInputs(prompt_text=dummy_text, mm_data=dummy_mm_data)
def _get_dummy_audios(
self,