mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 08:45:00 +08:00
[Frontend] OpenAI Responses API supports Tool/Function calling - non-harmony (#26874)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
This commit is contained in:
parent
981cadb35c
commit
59a50afa08
@ -0,0 +1,83 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
"""
|
||||
Set up this example by starting a vLLM OpenAI-compatible server with tool call
|
||||
options enabled.
|
||||
Reasoning models can be used through the Responses API as seen here
|
||||
https://platform.openai.com/docs/api-reference/responses
|
||||
For example:
|
||||
vllm serve Qwen/Qwen3-1.7B --reasoning-parser qwen3 \
|
||||
--structured-outputs-config.backend xgrammar \
|
||||
--enable-auto-tool-choice --tool-call-parser hermes
|
||||
"""
|
||||
|
||||
import json
|
||||
|
||||
from openai import OpenAI
|
||||
from utils import get_first_model
|
||||
|
||||
|
||||
def get_weather(latitude: float, longitude: float) -> str:
|
||||
"""
|
||||
Mock function to simulate getting weather data.
|
||||
In a real application, this would call an external weather API.
|
||||
"""
|
||||
return f"Current temperature at ({latitude}, {longitude}) is 20°C."
|
||||
|
||||
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"name": "get_weather",
|
||||
"description": "Get current temperature for provided coordinates in celsius.",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"latitude": {"type": "number"},
|
||||
"longitude": {"type": "number"},
|
||||
},
|
||||
"required": ["latitude", "longitude"],
|
||||
"additionalProperties": False,
|
||||
},
|
||||
"strict": True,
|
||||
}
|
||||
]
|
||||
|
||||
input_messages = [
|
||||
{"role": "user", "content": "What's the weather like in Paris today?"}
|
||||
]
|
||||
|
||||
|
||||
def main():
|
||||
base_url = "http://0.0.0.0:8000/v1"
|
||||
client = OpenAI(base_url=base_url, api_key="empty")
|
||||
model = get_first_model(client)
|
||||
response = client.responses.create(
|
||||
model=model, input=input_messages, tools=tools, tool_choice="required"
|
||||
)
|
||||
|
||||
for out in response.output:
|
||||
if out.type == "function_call":
|
||||
print("Function call:", out.name, out.arguments)
|
||||
tool_call = out
|
||||
args = json.loads(tool_call.arguments)
|
||||
result = get_weather(args["latitude"], args["longitude"])
|
||||
|
||||
input_messages.append(tool_call) # append model's function call message
|
||||
input_messages.append(
|
||||
{ # append result message
|
||||
"type": "function_call_output",
|
||||
"call_id": tool_call.call_id,
|
||||
"output": str(result),
|
||||
}
|
||||
)
|
||||
response_2 = client.responses.create(
|
||||
model=model,
|
||||
input=input_messages,
|
||||
tools=tools,
|
||||
)
|
||||
print(response_2.output_text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -15,8 +15,13 @@ def default_server_args():
|
||||
"--max-model-len",
|
||||
"8192",
|
||||
"--enforce-eager", # For faster startup.
|
||||
"--enable-auto-tool-choice",
|
||||
"--structured-outputs-config.backend",
|
||||
"xgrammar",
|
||||
"--tool-call-parser",
|
||||
"hermes",
|
||||
"--reasoning-parser",
|
||||
"deepseek_r1",
|
||||
"qwen3",
|
||||
]
|
||||
|
||||
|
||||
@ -0,0 +1,198 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import json
|
||||
|
||||
import openai # use the official client for correctness check
|
||||
import pytest
|
||||
|
||||
MODEL_NAME = "Qwen/Qwen3-1.7B"
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather in a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"city": {
|
||||
"type": "string",
|
||||
"description": "The city to find the weather for, e.g. 'Vienna'",
|
||||
"default": "Vienna",
|
||||
},
|
||||
"country": {
|
||||
"type": "string",
|
||||
"description": "The country that the city is in, e.g. 'Austria'",
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"description": "The unit to fetch the temperature in",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
},
|
||||
"options": {
|
||||
"$ref": "#/$defs/WeatherOptions",
|
||||
"description": "Optional parameters for weather query",
|
||||
},
|
||||
},
|
||||
"required": ["country", "unit"],
|
||||
"$defs": {
|
||||
"WeatherOptions": {
|
||||
"title": "WeatherOptions",
|
||||
"type": "object",
|
||||
"additionalProperties": False,
|
||||
"properties": {
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
"default": "celsius",
|
||||
"description": "Temperature unit",
|
||||
"title": "Temperature Unit",
|
||||
},
|
||||
"include_forecast": {
|
||||
"type": "boolean",
|
||||
"default": False,
|
||||
"description": "Whether to include a 24-hour forecast",
|
||||
"title": "Include Forecast",
|
||||
},
|
||||
"language": {
|
||||
"type": "string",
|
||||
"default": "zh-CN",
|
||||
"description": "Language of the response",
|
||||
"title": "Language",
|
||||
"enum": ["zh-CN", "en-US", "ja-JP"],
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
"type": "function",
|
||||
"name": "get_forecast",
|
||||
"description": "Get the weather forecast for a given location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"city": {
|
||||
"type": "string",
|
||||
"description": "The city to get the forecast for, e.g. 'Vienna'",
|
||||
"default": "Vienna",
|
||||
},
|
||||
"country": {
|
||||
"type": "string",
|
||||
"description": "The country that the city is in, e.g. 'Austria'",
|
||||
},
|
||||
"days": {
|
||||
"type": "integer",
|
||||
"description": "Number of days to get the forecast for (1-7)",
|
||||
},
|
||||
"unit": {
|
||||
"type": "string",
|
||||
"description": "The unit to fetch the temperature in",
|
||||
"enum": ["celsius", "fahrenheit"],
|
||||
},
|
||||
},
|
||||
"required": ["country", "days", "unit"],
|
||||
},
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.parametrize("model_name", [MODEL_NAME])
|
||||
@pytest.mark.parametrize("tool_choice", ["auto", "required"])
|
||||
async def test_function_tool_use(
|
||||
client: openai.AsyncOpenAI, model_name: str, tool_choice: str
|
||||
):
|
||||
prompt = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Can you tell me what the current weather is in Berlin and the "
|
||||
"forecast for the next 5 days, in fahrenheit?",
|
||||
},
|
||||
]
|
||||
response = await client.responses.create(
|
||||
model=model_name,
|
||||
input=prompt,
|
||||
tools=tools,
|
||||
tool_choice=tool_choice,
|
||||
)
|
||||
|
||||
assert len(response.output) >= 1
|
||||
tool_call = None
|
||||
reasoning = None
|
||||
for out in response.output:
|
||||
if out.type == "function_call":
|
||||
tool_call = out
|
||||
if out.type == "reasoning":
|
||||
reasoning = out
|
||||
assert tool_call is not None
|
||||
assert tool_call.type == "function_call"
|
||||
assert json.loads(tool_call.arguments) is not None
|
||||
assert reasoning is not None
|
||||
assert reasoning.type == "reasoning"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_named_tool_use(client: openai.AsyncOpenAI):
|
||||
def get_weather(latitude: float, longitude: float) -> str:
|
||||
"""
|
||||
Mock function to simulate getting weather data.
|
||||
In a real application, this would call an external weather API.
|
||||
"""
|
||||
return f"Current temperature at ({latitude}, {longitude}) is 20°C."
|
||||
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"name": "get_weather",
|
||||
"description": (
|
||||
"Get current temperature for provided coordinates in celsius."
|
||||
),
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"latitude": {"type": "number"},
|
||||
"longitude": {"type": "number"},
|
||||
},
|
||||
"required": ["latitude", "longitude"],
|
||||
"additionalProperties": False,
|
||||
},
|
||||
"strict": True,
|
||||
}
|
||||
]
|
||||
|
||||
input_messages = [
|
||||
{"role": "user", "content": "What's the weather like in Paris today?"}
|
||||
]
|
||||
|
||||
response = await client.responses.create(
|
||||
model=MODEL_NAME,
|
||||
input=input_messages,
|
||||
tools=tools,
|
||||
tool_choice={"type": "function", "name": "get_weather"},
|
||||
)
|
||||
assert len(response.output) >= 1
|
||||
for out in response.output:
|
||||
if out.type == "function_call":
|
||||
tool_call = out
|
||||
assert tool_call is not None
|
||||
assert tool_call.type == "function_call"
|
||||
assert tool_call.name == "get_weather"
|
||||
args = json.loads(tool_call.arguments)
|
||||
assert args["latitude"] is not None
|
||||
assert args["longitude"] is not None
|
||||
# call the tool
|
||||
result = get_weather(args["latitude"], args["longitude"])
|
||||
input_messages.append(tool_call) # append model's function call message
|
||||
input_messages.append(
|
||||
{ # append result message
|
||||
"type": "function_call_output",
|
||||
"call_id": tool_call.call_id,
|
||||
"output": str(result),
|
||||
}
|
||||
)
|
||||
# create a new response with the tool call result
|
||||
response_2 = await client.responses.create(model=MODEL_NAME, input=input_messages)
|
||||
# check the output
|
||||
assert len(response_2.output_text) > 0
|
||||
@ -1098,13 +1098,13 @@ class OpenAIServing:
|
||||
)
|
||||
|
||||
if should_parse_tools:
|
||||
if not isinstance(request, ChatCompletionRequest):
|
||||
msg = "Tool usage is only supported for Chat Completions API"
|
||||
if not isinstance(request, ChatCompletionRequest | ResponsesRequest):
|
||||
msg = (
|
||||
"Tool usage is only supported for Chat Completions API "
|
||||
"or Responses API requests."
|
||||
)
|
||||
raise NotImplementedError(msg)
|
||||
|
||||
request = tool_parser(tokenizer).adjust_request( # type: ignore
|
||||
request=request
|
||||
)
|
||||
request = tool_parser(tokenizer).adjust_request(request=request) # type: ignore
|
||||
|
||||
if tokenizer is None:
|
||||
assert isinstance(request_prompt, str), (
|
||||
|
||||
@ -94,6 +94,7 @@ from vllm.entrypoints.openai.protocol import (
|
||||
)
|
||||
from vllm.entrypoints.openai.serving_engine import OpenAIServing
|
||||
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
||||
from vllm.entrypoints.responses_utils import construct_chat_message_with_tool_call
|
||||
from vllm.entrypoints.tool_server import ToolServer
|
||||
from vllm.inputs.data import TokensPrompt as EngineTokensPrompt
|
||||
from vllm.logger import init_logger
|
||||
@ -196,16 +197,12 @@ class OpenAIServingResponses(OpenAIServing):
|
||||
self.default_sampling_params["stop_token_ids"].extend(
|
||||
get_stop_tokens_for_assistant_actions()
|
||||
)
|
||||
|
||||
self.enable_auto_tools = enable_auto_tools
|
||||
# set up tool use
|
||||
self.enable_auto_tools: bool = enable_auto_tools
|
||||
if self.enable_auto_tools:
|
||||
logger.info(
|
||||
'"auto" tool choice has been enabled please note that while'
|
||||
" the parallel_tool_calls client option is preset for "
|
||||
"compatibility reasons, it will be ignored."
|
||||
)
|
||||
|
||||
self.tool_parser = self._get_tool_parser(
|
||||
tool_parser_name=tool_parser, enable_auto_tools=enable_auto_tools
|
||||
)
|
||||
self.exclude_tools_when_tool_choice_none = False
|
||||
# HACK(woosuk): This is a hack. We should use a better store.
|
||||
# FIXME: If enable_store=True, this may cause a memory leak since we
|
||||
# never remove responses from the store.
|
||||
@ -511,16 +508,20 @@ class OpenAIServingResponses(OpenAIServing):
|
||||
prev_response: ResponsesResponse | None,
|
||||
tokenizer: AnyTokenizer,
|
||||
):
|
||||
if len(request.tools) > 0:
|
||||
raise NotImplementedError(
|
||||
"Tool use is not supported in Responses API without Harmony"
|
||||
)
|
||||
if request.tools is None or (
|
||||
request.tool_choice == "none" and self.exclude_tools_when_tool_choice_none
|
||||
):
|
||||
tool_dicts = None
|
||||
else:
|
||||
tool_dicts = [tool.model_dump() for tool in request.tools]
|
||||
# Construct the input messages.
|
||||
messages = self._construct_input_messages(request, prev_response)
|
||||
_, request_prompts, engine_prompts = await self._preprocess_chat(
|
||||
request,
|
||||
tokenizer,
|
||||
messages,
|
||||
tool_dicts=tool_dicts,
|
||||
tool_parser=self.tool_parser,
|
||||
chat_template=self.chat_template,
|
||||
chat_template_content_format=self.chat_template_content_format,
|
||||
)
|
||||
@ -802,7 +803,8 @@ class OpenAIServingResponses(OpenAIServing):
|
||||
delta=False,
|
||||
)
|
||||
|
||||
output = []
|
||||
reasoning_item = None
|
||||
message_item = None
|
||||
if reasoning_content:
|
||||
reasoning_item = ResponseReasoningItem(
|
||||
id=f"rs_{random_uuid()}",
|
||||
@ -815,7 +817,13 @@ class OpenAIServingResponses(OpenAIServing):
|
||||
],
|
||||
status=None, # NOTE: Only the last output item has status.
|
||||
)
|
||||
output.append(reasoning_item)
|
||||
tool_calls, content = self._parse_tool_calls_from_content(
|
||||
request=request,
|
||||
tokenizer=tokenizer,
|
||||
content=content,
|
||||
enable_auto_tools=self.enable_auto_tools,
|
||||
tool_parser_cls=self.tool_parser,
|
||||
)
|
||||
if content:
|
||||
output_text = ResponseOutputText(
|
||||
text=content,
|
||||
@ -832,15 +840,33 @@ class OpenAIServingResponses(OpenAIServing):
|
||||
else None
|
||||
),
|
||||
)
|
||||
message = ResponseOutputMessage(
|
||||
message_item = ResponseOutputMessage(
|
||||
id=f"msg_{random_uuid()}",
|
||||
content=[output_text],
|
||||
role="assistant",
|
||||
status="completed",
|
||||
type="message",
|
||||
)
|
||||
output.append(message)
|
||||
return output
|
||||
outputs = []
|
||||
|
||||
if reasoning_item:
|
||||
outputs.append(reasoning_item)
|
||||
if message_item:
|
||||
outputs.append(message_item)
|
||||
if tool_calls:
|
||||
tool_call_items = [
|
||||
ResponseFunctionToolCall(
|
||||
id=f"fc_{random_uuid()}",
|
||||
call_id=f"call_{random_uuid()}",
|
||||
type="function_call",
|
||||
status="completed",
|
||||
name=tool_call.name,
|
||||
arguments=tool_call.arguments,
|
||||
)
|
||||
for tool_call in tool_calls
|
||||
]
|
||||
outputs.extend(tool_call_items)
|
||||
return outputs
|
||||
|
||||
def _make_response_output_items_with_harmony(
|
||||
self,
|
||||
@ -893,7 +919,8 @@ class OpenAIServingResponses(OpenAIServing):
|
||||
if isinstance(request.input, str):
|
||||
messages.append({"role": "user", "content": request.input})
|
||||
else:
|
||||
messages.extend(request.input) # type: ignore
|
||||
for item in request.input:
|
||||
messages.append(construct_chat_message_with_tool_call(item))
|
||||
return messages
|
||||
|
||||
def _construct_harmony_system_input_message(
|
||||
|
||||
@ -6,10 +6,16 @@ import os
|
||||
from collections.abc import Callable, Sequence
|
||||
from functools import cached_property
|
||||
|
||||
from openai.types.responses.response_format_text_json_schema_config import (
|
||||
ResponseFormatTextJSONSchemaConfig,
|
||||
)
|
||||
|
||||
from vllm.entrypoints.openai.protocol import (
|
||||
ChatCompletionRequest,
|
||||
DeltaMessage,
|
||||
ExtractedToolCallInformation,
|
||||
ResponsesRequest,
|
||||
ResponseTextConfig,
|
||||
)
|
||||
from vllm.entrypoints.openai.tool_parsers.utils import get_json_schema_from_tools
|
||||
from vllm.logger import init_logger
|
||||
@ -56,11 +62,21 @@ class ToolParser:
|
||||
)
|
||||
# Set structured output params for tool calling
|
||||
if json_schema_from_tool is not None:
|
||||
if request.structured_outputs is None:
|
||||
if isinstance(request, ChatCompletionRequest):
|
||||
request.structured_outputs = StructuredOutputsParams()
|
||||
# tool_choice: "Forced Function" or "required" will override
|
||||
# structured output json settings to make tool calling work correctly
|
||||
request.structured_outputs.json = json_schema_from_tool
|
||||
# tool_choice: "Forced Function" or "required" will override
|
||||
# structured output json settings to make tool calling work correctly
|
||||
request.structured_outputs.json = json_schema_from_tool
|
||||
if isinstance(request, ResponsesRequest):
|
||||
request.text = ResponseTextConfig()
|
||||
request.text.format = ResponseFormatTextJSONSchemaConfig(
|
||||
name="tool_calling_response",
|
||||
schema=json_schema_from_tool,
|
||||
type="json_schema",
|
||||
description="Response format for tool calling",
|
||||
strict=True,
|
||||
)
|
||||
|
||||
return request
|
||||
|
||||
def extract_tool_calls(
|
||||
|
||||
45
vllm/entrypoints/responses_utils.py
Normal file
45
vllm/entrypoints/responses_utils.py
Normal file
@ -0,0 +1,45 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from openai.types.chat import (
|
||||
ChatCompletionAssistantMessageParam,
|
||||
ChatCompletionMessageToolCallParam,
|
||||
ChatCompletionToolMessageParam,
|
||||
)
|
||||
from openai.types.chat.chat_completion_message_tool_call_param import (
|
||||
Function as FunctionCallTool,
|
||||
)
|
||||
from openai.types.responses import ResponseFunctionToolCall
|
||||
|
||||
from vllm.entrypoints.openai.protocol import (
|
||||
ChatCompletionMessageParam,
|
||||
ResponseInputOutputItem,
|
||||
)
|
||||
|
||||
|
||||
def construct_chat_message_with_tool_call(
|
||||
item: ResponseInputOutputItem,
|
||||
) -> ChatCompletionMessageParam:
|
||||
if isinstance(item, ResponseFunctionToolCall):
|
||||
# Append the function call as a tool call.
|
||||
return ChatCompletionAssistantMessageParam(
|
||||
role="assistant",
|
||||
tool_calls=[
|
||||
ChatCompletionMessageToolCallParam(
|
||||
id=item.call_id,
|
||||
function=FunctionCallTool(
|
||||
name=item.name,
|
||||
arguments=item.arguments,
|
||||
),
|
||||
type="function",
|
||||
)
|
||||
],
|
||||
)
|
||||
elif item.get("type") == "function_call_output":
|
||||
# Append the function call output as a tool message.
|
||||
return ChatCompletionToolMessageParam(
|
||||
role="tool",
|
||||
content=item.get("output"),
|
||||
tool_call_id=item.get("call_id"),
|
||||
)
|
||||
return item # type: ignore
|
||||
Loading…
x
Reference in New Issue
Block a user