[Attention] Unify mamba and attention backend selection (#23171)

Signed-off-by: Ayush Satyam <ayushsatyam146@gmail.com>
This commit is contained in:
Ayush Satyam 2025-08-25 14:39:36 +05:30 committed by GitHub
parent d0a4a3f645
commit 5c4b6e66fe
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 186 additions and 72 deletions

View File

@ -0,0 +1,104 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Tests for mamba attention backend selectors."""
from types import SimpleNamespace
import pytest
from vllm.model_executor.layers.mamba.mamba_mixer import MambaMixer
from vllm.model_executor.layers.mamba.mamba_mixer2 import MambaMixer2
from vllm.model_executor.layers.mamba.short_conv import ShortConv
from vllm.model_executor.models.minimax_text_01 import (
MiniMaxText01LinearAttention)
from vllm.v1.attention.backends.linear_attn import LinearAttentionBackend
from vllm.v1.attention.backends.mamba1_attn import Mamba1AttentionBackend
from vllm.v1.attention.backends.mamba2_attn import Mamba2AttentionBackend
from vllm.v1.attention.backends.short_conv_attn import (
ShortConvAttentionBackend)
@pytest.mark.parametrize(
"layer_class, init_kwargs, expected_backend, expected_mamba_type", [
(
MambaMixer,
dict(
hidden_size=128,
ssm_state_size=16,
conv_kernel_size=4,
intermediate_size=256,
time_step_rank=8,
use_conv_bias=True,
use_bias=False,
use_rms_norm=True,
),
Mamba1AttentionBackend,
"mamba1",
),
(
MambaMixer2,
dict(
hidden_size=128,
ssm_state_size=16,
conv_kernel_size=4,
intermediate_size=256,
use_conv_bias=True,
use_bias=False,
n_groups=1,
num_heads=8,
head_dim=32,
),
Mamba2AttentionBackend,
"mamba2",
),
(
MiniMaxText01LinearAttention,
dict(
hidden_size=128,
hidden_inner_size=256,
num_heads=8,
head_dim=32,
max_position=2048,
block_size=64,
num_hidden_layer=12,
layer_idx=0,
linear_layer_idx=0,
),
LinearAttentionBackend,
"linear_attention",
),
(
ShortConv,
dict(
config=SimpleNamespace(conv_L_cache=32, conv_bias=True),
dim=128,
layer_idx=0,
),
ShortConvAttentionBackend,
"short_conv",
),
])
def test_mamba_layers_get_attn_backend(dist_init, layer_class, init_kwargs,
expected_backend, expected_mamba_type):
"""Test that Mamba-like layers return the correct attention backend."""
layer = layer_class(**init_kwargs)
backend_class = layer.get_attn_backend()
assert backend_class is expected_backend
assert layer.mamba_type == expected_mamba_type
@pytest.mark.parametrize("layer_class,expected_backend,expected_mamba_type", [
(MambaMixer, Mamba1AttentionBackend, "mamba1"),
(MambaMixer2, Mamba2AttentionBackend, "mamba2"),
(MiniMaxText01LinearAttention, LinearAttentionBackend, "linear_attention"),
(ShortConv, ShortConvAttentionBackend, "short_conv"),
])
def test_mamba_layers_have_unified_interface(layer_class, expected_backend,
expected_mamba_type):
"""Test that all Mamba layers have the unified get_attn_backend
interface."""
assert hasattr(layer_class, 'get_attn_backend'), (
f"{layer_class.__name__} should have get_attn_backend method")
assert hasattr(layer_class, 'mamba_type'), (
f"{layer_class.__name__} should have mamba_type property")

View File

@ -1,25 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Tests for mamba attention backend selectors."""
import pytest
from vllm.v1.attention.backends.mamba2_attn import Mamba2AttentionBackend
from vllm.v1.attention.backends.mamba_selectors import get_mamba_attn_backend
@pytest.mark.parametrize(argnames=["mamba_type", "expected_backend"],
argvalues=[("mamba2", Mamba2AttentionBackend)])
def test_get_mamba_attn_backend_mamba2(mamba_type, expected_backend):
backend_class = get_mamba_attn_backend(mamba_type)
assert backend_class is expected_backend
def test_get_mamba_attn_backend_unsupported():
unsupported_types = ["mamba", ""]
for mamba_type in unsupported_types:
err_message = f"Mamba Attention type {mamba_type} is not supported yet."
with pytest.raises(NotImplementedError, match=err_message):
get_mamba_attn_backend(mamba_type)

View File

@ -18,6 +18,7 @@ from vllm.distributed.kv_transfer import (get_kv_transfer_group,
is_v1_kv_transfer_group) is_v1_kv_transfer_group)
from vllm.forward_context import ForwardContext, get_forward_context from vllm.forward_context import ForwardContext, get_forward_context
from vllm.logger import init_logger from vllm.logger import init_logger
from vllm.model_executor.layers.attention_layer_base import AttentionLayerBase
from vllm.model_executor.layers.linear import UnquantizedLinearMethod from vllm.model_executor.layers.linear import UnquantizedLinearMethod
from vllm.model_executor.layers.quantization.base_config import ( from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig) QuantizationConfig)
@ -54,7 +55,7 @@ def check_xformers_availability():
return USE_XFORMERS_OPS return USE_XFORMERS_OPS
class Attention(nn.Module): class Attention(nn.Module, AttentionLayerBase):
"""Attention layer. """Attention layer.
This class takes query, key, and value tensors as input. The input tensors This class takes query, key, and value tensors as input. The input tensors

View File

@ -0,0 +1,23 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Base class for attention-like layers."""
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionBackend
class AttentionLayerBase(ABC):
"""
Base class for attention-like layers (Attention, Mamba, etc.)
that support the v1 engine.
This provides a common interface for getting attention backends
from different layer types.
"""
@abstractmethod
def get_attn_backend(self) -> type["AttentionBackend"]:
"""Get the attention backend class for this layer."""
pass

View File

@ -1,12 +1,18 @@
# SPDX-License-Identifier: Apache-2.0 # SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from abc import ABC, abstractmethod from abc import abstractmethod
from collections.abc import Iterable from collections.abc import Iterable
from typing import TYPE_CHECKING
import torch import torch
from vllm.model_executor.layers.attention_layer_base import AttentionLayerBase
class MambaBase(ABC): if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionBackend
class MambaBase(AttentionLayerBase):
""" """
Base class for Mamba-like layers which support the v1 engine. Base class for Mamba-like layers which support the v1 engine.
Inherit from this class if you implement a custom layer. Inherit from this class if you implement a custom layer.
@ -32,3 +38,8 @@ class MambaBase(ABC):
@abstractmethod @abstractmethod
def mamba_type(self) -> str: def mamba_type(self) -> str:
pass pass
@abstractmethod
def get_attn_backend(self) -> type["AttentionBackend"]:
"""Get the attention backend class for this Mamba layer."""
pass

View File

@ -1,7 +1,10 @@
# SPDX-License-Identifier: Apache-2.0 # SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import NamedTuple, Optional from typing import TYPE_CHECKING, NamedTuple, Optional
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionBackend
import torch import torch
from torch import nn from torch import nn
@ -404,6 +407,11 @@ class MambaMixer(MambaBase, CustomOp):
def mamba_type(self) -> str: def mamba_type(self) -> str:
return "mamba1" return "mamba1"
def get_attn_backend(self) -> type["AttentionBackend"]:
from vllm.v1.attention.backends.mamba1_attn import (
Mamba1AttentionBackend)
return Mamba1AttentionBackend
def _time_proj_bias(self) -> Optional[torch.Tensor]: def _time_proj_bias(self) -> Optional[torch.Tensor]:
if hasattr(self.dt_proj, "bias") and self.dt_proj.bias is not None: if hasattr(self.dt_proj, "bias") and self.dt_proj.bias is not None:
return self.dt_proj.bias.float() return self.dt_proj.bias.float()

View File

@ -1,7 +1,10 @@
# SPDX-License-Identifier: Apache-2.0 # SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional, Union from typing import TYPE_CHECKING, Optional, Union
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionBackend
import torch import torch
from torch import nn from torch import nn
@ -758,6 +761,11 @@ class MambaMixer2(MambaBase, CustomOp):
def mamba_type(self) -> str: def mamba_type(self) -> str:
return "mamba2" return "mamba2"
def get_attn_backend(self) -> type["AttentionBackend"]:
from vllm.v1.attention.backends.mamba2_attn import (
Mamba2AttentionBackend)
return Mamba2AttentionBackend
def mamba_mixer2( def mamba_mixer2(
hidden_states: torch.Tensor, hidden_states: torch.Tensor,

View File

@ -1,7 +1,10 @@
# SPDX-License-Identifier: Apache-2.0 # SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional from typing import TYPE_CHECKING, Optional
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionBackend
import torch import torch
@ -232,6 +235,11 @@ class ShortConv(MambaBase, CustomOp):
def mamba_type(self) -> str: def mamba_type(self) -> str:
return "short_conv" return "short_conv"
def get_attn_backend(self) -> type["AttentionBackend"]:
from vllm.v1.attention.backends.short_conv_attn import (
ShortConvAttentionBackend)
return ShortConvAttentionBackend
def short_conv( def short_conv(
hidden_states: torch.Tensor, hidden_states: torch.Tensor,

View File

@ -4,7 +4,10 @@
import copy import copy
import math import math
from collections.abc import Iterable from collections.abc import Iterable
from typing import Optional, Union from typing import TYPE_CHECKING, Optional, Union
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionBackend
import regex as re import regex as re
import torch import torch
@ -339,6 +342,11 @@ class MiniMaxText01LinearAttention(nn.Module, MambaBase):
def mamba_type(self) -> str: def mamba_type(self) -> str:
return "linear_attention" return "linear_attention"
def get_attn_backend(self) -> type["AttentionBackend"]:
from vllm.v1.attention.backends.linear_attn import (
LinearAttentionBackend)
return LinearAttentionBackend
def get_state_dtype(self) -> tuple[torch.dtype]: def get_state_dtype(self) -> tuple[torch.dtype]:
return MambaStateDtypeCalculator.linear_attention_state_dtype( return MambaStateDtypeCalculator.linear_attention_state_dtype(
self.model_config.dtype, self.model_config.dtype,

View File

@ -1,22 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm.attention.backends.abstract import AttentionBackend
from vllm.v1.attention.backends.linear_attn import LinearAttentionBackend
from vllm.v1.attention.backends.mamba1_attn import Mamba1AttentionBackend
from vllm.v1.attention.backends.mamba2_attn import Mamba2AttentionBackend
from vllm.v1.attention.backends.short_conv_attn import (
ShortConvAttentionBackend)
def get_mamba_attn_backend(mamba_type: str) -> type[AttentionBackend]:
if mamba_type == "mamba1":
return Mamba1AttentionBackend
if mamba_type == "mamba2":
return Mamba2AttentionBackend
if mamba_type == "linear_attention":
return LinearAttentionBackend
if mamba_type == "short_conv":
return ShortConvAttentionBackend
raise NotImplementedError(f"Mamba Attention type {mamba_type} is not "
"supported yet.")

View File

@ -35,7 +35,8 @@ from vllm.distributed.parallel_state import (
from vllm.forward_context import (BatchDescriptor, DPMetadata, from vllm.forward_context import (BatchDescriptor, DPMetadata,
set_forward_context) set_forward_context)
from vllm.logger import init_logger from vllm.logger import init_logger
from vllm.model_executor.layers.mamba.mamba_mixer2 import MambaBase from vllm.model_executor.layers.attention_layer_base import AttentionLayerBase
from vllm.model_executor.layers.mamba.abstract import MambaBase
from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding
from vllm.model_executor.model_loader import TensorizerLoader, get_model_loader from vllm.model_executor.model_loader import TensorizerLoader, get_model_loader
from vllm.model_executor.models.interfaces import (is_mixture_of_experts, from vllm.model_executor.models.interfaces import (is_mixture_of_experts,
@ -55,7 +56,6 @@ from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, DeviceMemoryProfiler,
GiB_bytes, LazyLoader, cdiv, check_use_alibi, GiB_bytes, LazyLoader, cdiv, check_use_alibi,
get_dtype_size, is_pin_memory_available, round_up, get_dtype_size, is_pin_memory_available, round_up,
supports_dynamo) supports_dynamo)
from vllm.v1.attention.backends.mamba_selectors import get_mamba_attn_backend
from vllm.v1.attention.backends.utils import ( from vllm.v1.attention.backends.utils import (
AttentionCGSupport, AttentionMetadataBuilder, CommonAttentionMetadata, AttentionCGSupport, AttentionMetadataBuilder, CommonAttentionMetadata,
make_kv_sharing_fast_prefill_attention_metadata, make_kv_sharing_fast_prefill_attention_metadata,
@ -2747,11 +2747,13 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
""" """
assert len(self.attn_groups) == 0, \ assert len(self.attn_groups) == 0, \
"Attention backends are already initialized" "Attention backends are already initialized"
attn_layers = get_layers_from_vllm_config(self.vllm_config, Attention)
def get_attn_backends_for_layers( def get_attn_backends_for_layers(
layer_names: list[str] layer_names: list[str]
) -> dict[type[AttentionBackend], list[str]]: ) -> dict[type[AttentionBackend], list[str]]:
layers = get_layers_from_vllm_config(self.vllm_config,
AttentionLayerBase,
layer_names)
attn_backends = {} attn_backends = {}
attn_backend_layers = defaultdict(list) attn_backend_layers = defaultdict(list)
# Dedupe based on full class name; this is a bit safer than using # Dedupe based on full class name; this is a bit safer than using
@ -2760,7 +2762,7 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
# they are cached correctly, there will be different objects per # they are cached correctly, there will be different objects per
# layer. # layer.
for layer_name in layer_names: for layer_name in layer_names:
attn_backend = attn_layers[layer_name].get_attn_backend() attn_backend = layers[layer_name].get_attn_backend()
key = attn_backend.full_cls_name() key = attn_backend.full_cls_name()
attn_backends[key] = attn_backend attn_backends[key] = attn_backend
attn_backend_layers[key].append(layer_name) attn_backend_layers[key].append(layer_name)
@ -2789,20 +2791,8 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
for kv_cache_group_spec in kv_cache_config.kv_cache_groups: for kv_cache_group_spec in kv_cache_config.kv_cache_groups:
kv_cache_spec = kv_cache_group_spec.kv_cache_spec kv_cache_spec = kv_cache_group_spec.kv_cache_spec
if isinstance(kv_cache_spec, AttentionSpec):
attn_backends = get_attn_backends_for_layers( attn_backends = get_attn_backends_for_layers(
kv_cache_group_spec.layer_names) kv_cache_group_spec.layer_names)
# TODO(lucas): move `get_mamba_attn_backend` into the mamba
# layers like above
elif isinstance(kv_cache_spec, MambaSpec):
attn_backends = {
get_mamba_attn_backend(kv_cache_spec.mamba_type):
kv_cache_group_spec.layer_names
}
else:
raise ValueError(
f"Unknown KV cache spec type: {type(kv_cache_spec)}")
self.attn_groups.append( self.attn_groups.append(
create_attn_groups(attn_backends, kv_cache_spec)) create_attn_groups(attn_backends, kv_cache_spec))