[V1][Bugfix][Spec Decode] Fix incorrect outputs in V1 speculative decoding due to batch indexing (#14645)

Signed-off-by: Benjamin Chislett <benjamin.chislett@centml.ai>
This commit is contained in:
Benjamin Chislett 2025-03-12 01:12:41 -04:00 committed by GitHub
parent e22ee1e7a2
commit 5c538c37b2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 50 additions and 15 deletions

View File

@ -1,4 +1,6 @@
# SPDX-License-Identifier: Apache-2.0
import random
import pytest
from vllm import LLM, SamplingParams
@ -6,16 +8,41 @@ from vllm import LLM, SamplingParams
@pytest.fixture
def test_prompts():
return [
"Can you repeat the sentence ten times, this is a sentence.",
"Can you repeat the sentence ten times, this is a test.",
]
prompt_types = ["repeat", "sentence"]
num_prompts = 100
prompts = []
random.seed(0)
random_prompt_type_choices = random.choices(prompt_types, k=num_prompts)
# Generate a mixed batch of prompts, some of which can be easily
# predicted by n-gram matching and some which likely cannot.
for kind in random_prompt_type_choices:
word_choices = ["test", "temp", "hello", "where"]
word = random.choice(word_choices)
if kind == "repeat":
prompt = f"""
please repeat the word '{word}' 10 times.
give no other output than the word at least ten times in a row,
in lowercase with spaces between each word and without quotes.
"""
elif kind == "sentence":
prompt = f"""
please give a ten-word sentence that
uses the word {word} at least once.
give no other output than that simple sentence without quotes.
"""
else:
raise ValueError(f"Unknown prompt type: {kind}")
prompts.append([{"role": "user", "content": prompt}])
return prompts
@pytest.fixture
def sampling_config():
# Only support greedy for now
return SamplingParams(temperature=0, max_tokens=30, ignore_eos=False)
return SamplingParams(temperature=0, max_tokens=10, ignore_eos=False)
@pytest.fixture
@ -32,18 +59,28 @@ def test_ngram_correctness(monkeypatch, test_prompts, sampling_config,
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
ref_llm = LLM(model=model_name)
ref_outputs = ref_llm.generate(test_prompts, sampling_config)
ref_llm = LLM(model=model_name, max_model_len=1024)
ref_outputs = ref_llm.chat(test_prompts, sampling_config)
del ref_llm
spec_llm = LLM(model=model_name,
speculative_model='[ngram]',
ngram_prompt_lookup_max=5,
ngram_prompt_lookup_min=3,
num_speculative_tokens=3)
spec_outputs = spec_llm.generate(test_prompts, sampling_config)
num_speculative_tokens=3,
max_model_len=1024)
spec_outputs = spec_llm.chat(test_prompts, sampling_config)
matches = 0
misses = 0
for ref_output, spec_output in zip(ref_outputs, spec_outputs):
assert ref_output.outputs[0].text == spec_output.outputs[0].text, \
(f"ref_output: {ref_output.outputs[0].text},"
f"spec_output: {spec_output.outputs[0].text}")
if ref_output.outputs[0].text == spec_output.outputs[0].text:
matches += 1
else:
misses += 1
print(f"ref_output: {ref_output.outputs[0].text}")
print(f"spec_output: {spec_output.outputs[0].text}")
# Heuristic: expect at least 70% of the prompts to match exactly
# Upon failure, inspect the outputs to check for inaccuracy.
assert matches > int(0.7 * len(ref_outputs))
del spec_llm

View File

@ -1015,11 +1015,9 @@ class GPUModelRunner(LoRAModelRunnerMixin):
else:
target_probs = self.model.sampler.compute_probs(
logits, sampling_metadata)
scheduled_request_ids = scheduler_output.num_scheduled_tokens.keys(
)
draft_token_ids = [
scheduler_output.scheduled_spec_decode_tokens.get(req_id, [])
for req_id in scheduled_request_ids
for req_id in self.input_batch.req_ids
]
sampler_output = self.rejection_sampler(draft_token_ids,
target_probs,