[Frontend] supports interleaved thinking (#28531)

Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
This commit is contained in:
Chauncey 2025-11-13 16:14:13 +08:00 committed by GitHub
parent fa183e9271
commit 5c9ad138d5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 135 additions and 1 deletions

View File

@ -0,0 +1,118 @@
# Interleaved Thinking
## Introduction
Interleaved thinking allows models to reason between tool calls, enabling more sophisticated decision-making after receiving tool results. This feature helps models chain multiple tool calls with reasoning steps in between and make nuanced decisions based on intermediate results.
Important: Interleaved thinking increases token usage and response latency. Consider your budget and performance requirements when enabling this feature.
## How Interleaved Thinking Works
With interleaved thinking, the model can:
- Reason about the results of a tool call before deciding what to do next
- Chain multiple tool calls with reasoning steps in between
- Make more nuanced decisions based on intermediate results
- Provide transparent reasoning for its tool selection process
## Supported Models
vLLM currently supports the following interleaved thinking models:
| Model Series | Reasoning Parser Name |
|--------------|-----------------------|
| moonshotai/Kimi-K2-Thinking | kimi_k2 |
| MiniMaxAI/MiniMax-M2 | minimax_m2 |
## Example Usage
To use interleaved thinking with tool calls, specify a model that supports this feature and enable tool calls in your chat completion request. Here's an example:
??? code
```python
"""
vllm serve MiniMaxAI/MiniMax-M2 \
--tensor-parallel-size 4 \
--tool-call-parser minimax_m2 \
--reasoning-parser minimax_m2 \
--enable-auto-tool-choice
"""
import json
from openai import OpenAI
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
def get_current_weather(location: str, unit: "str"):
"""Get the current weather in a given location"""
if unit == "celsius":
return f"The current temperature in {location} is 22°C."
else:
return f"The current temperature in {location} is 72°F."
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "City and state, e.g., 'San Francisco, CA'",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location", "unit"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather in Fahrenheit like in San Francisco?"}]
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=messages,
tools=tools,
tool_choice="auto",
)
tool_call = response.choices[0].message.tool_calls[0].function
messages.append(
{
"role": "assistant",
"tool_calls": response.choices[0].message.tool_calls,
"reasoning": response.choices[0].message.reasoning, # append reasoning
}
)
# Simulate tool execution
available_tools = {"get_weather": get_current_weather}
completion_tool_calls = response.choices[0].message.tool_calls
for call in completion_tool_calls:
tool_to_call = available_tools[call.function.name]
args = json.loads(call.function.arguments)
result = tool_to_call(**args)
messages.append(
{
"role": "tool",
"content": result,
"tool_call_id": call.id,
"name": call.function.name,
}
)
response_2 = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=messages,
tools=tools,
tool_choice="auto",
)
print(response_2.choices[0].message.content)
```
This example demonstrates how to set up interleaved thinking with tool calls using a weather retrieval function. The model reasons about the tool results before generating the final response.

View File

@ -161,6 +161,7 @@ def main():
{
"role": "assistant",
"tool_calls": chat_completion.choices[0].message.tool_calls,
"reasoning": chat_completion.choices[0].message.reasoning,
}
)

View File

@ -240,6 +240,9 @@ class CustomChatCompletionMessageParam(TypedDict, total=False):
tool_calls: Iterable[ChatCompletionMessageToolCallParam] | None
"""The tool calls generated by the model, such as function calls."""
reasoning: str | None
"""The reasoning content for interleaved thinking."""
ChatCompletionMessageParam: TypeAlias = (
OpenAIChatCompletionMessageParam
@ -265,6 +268,12 @@ class ConversationMessage(TypedDict, total=False):
tool_calls: Iterable[ChatCompletionMessageToolCallParam] | None
"""The tool calls generated by the model, such as function calls."""
reasoning: str | None
"""The reasoning content for interleaved thinking."""
reasoning_content: str | None
"""Deprecated: The reasoning content for interleaved thinking."""
# Passed in by user
ChatTemplateContentFormatOption = Literal["auto", "string", "openai"]
@ -1374,7 +1383,7 @@ def _parse_chat_message_content(
) -> list[ConversationMessage]:
role = message["role"]
content = message.get("content")
reasoning = message.get("reasoning") or message.get("reasoning_content")
if content is None:
content = []
elif isinstance(content, str):
@ -1396,6 +1405,12 @@ def _parse_chat_message_content(
# follow the OpenAI spec.
if "tool_calls" in parsed_msg and parsed_msg["tool_calls"] is not None:
result_msg["tool_calls"] = list(parsed_msg["tool_calls"])
# Include reasoning if present for interleaved thinking.
if reasoning is not None:
result_msg["reasoning"] = cast(str, reasoning)
result_msg["reasoning_content"] = cast(
str, reasoning
) # keep compatibility
elif role == "tool":
parsed_msg = _ToolParser(message)
if "tool_call_id" in parsed_msg: