[Core] Add reload_weights RPC method (#20096)

Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
This commit is contained in:
22quinn 2025-07-23 14:24:52 -07:00 committed by GitHub
parent 14bf19e39f
commit 5c9b807b34
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 51 additions and 34 deletions

View File

@ -460,11 +460,16 @@ def test_load_model_weights_inplace(dist_init, model_runner, model_runner_2):
{"load_config": {
"load_format": original_load_format
}})
model_runner_2.load_model() # Load real weights inplace
model_runner_2.reload_weights() # Load real weights inplace
assert str(model_runner.get_model().state_dict()) == str(
model_runner_2.get_model().state_dict())
def test_reload_weights_before_load_model(model_runner):
with pytest.raises(AssertionError):
model_runner.reload_weights()
def test_init_kv_cache_with_kv_sharing_invalid_target_layer_order():
torch.set_default_dtype(torch.float16)
layer_0 = "model.layers.0.self_attn.attn"

View File

@ -1873,17 +1873,9 @@ class GPUModelRunner(LoRAModelRunnerMixin):
with DeviceMemoryProfiler() as m:
time_before_load = time.perf_counter()
model_loader = get_model_loader(self.load_config)
if not hasattr(self, "model"):
logger.info("Loading model from scratch...")
self.model = model_loader.load_model(
vllm_config=self.vllm_config,
model_config=self.model_config)
else:
logger.info(
"Model was already initialized. Loading weights inplace..."
)
model_loader.load_weights(self.model,
model_config=self.model_config)
logger.info("Loading model from scratch...")
self.model = model_loader.load_model(
vllm_config=self.vllm_config, model_config=self.model_config)
if self.lora_config:
self.model = self.load_lora_model(self.model,
self.model_config,
@ -1916,6 +1908,13 @@ class GPUModelRunner(LoRAModelRunnerMixin):
rank_mapping,
)
def reload_weights(self) -> None:
assert getattr(self, "model", None) is not None, \
"Cannot reload weights before model is loaded."
model_loader = get_model_loader(self.load_config)
logger.info("Reloading weights inplace...")
model_loader.load_weights(self.model, model_config=self.model_config)
def save_tensorized_model(
self,
tensorizer_config: "TensorizerConfig",

View File

@ -4,6 +4,7 @@
import copy
import gc
import os
from contextlib import AbstractContextManager, nullcontext
from typing import TYPE_CHECKING, Any, Optional
import torch
@ -118,6 +119,21 @@ class Worker(WorkerBase):
buffer.data.copy_(self._sleep_saved_buffers[name].data)
self._sleep_saved_buffers = {}
def _maybe_get_memory_pool_context(self,
tag: str) -> AbstractContextManager:
if self.vllm_config.model_config.enable_sleep_mode:
from vllm.device_allocator.cumem import CuMemAllocator
allocator = CuMemAllocator.get_instance()
if tag == "weights":
assert allocator.get_current_usage() == 0, (
"Sleep mode can only be "
"used for one instance per process.")
context = allocator.use_memory_pool(tag=tag)
else:
context = nullcontext()
return context
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
self.cache_config.num_gpu_blocks = num_gpu_blocks
@ -179,24 +195,17 @@ class Worker(WorkerBase):
# FIXME(youkaichao & ywang96): Use TorchDispatchMode instead of memory pool
# to hijack tensor allocation.
def load_model(self) -> None:
if self.vllm_config.model_config.enable_sleep_mode:
from vllm.device_allocator.cumem import CuMemAllocator
allocator = CuMemAllocator.get_instance()
assert allocator.get_current_usage() == 0, (
"Sleep mode can only be "
"used for one instance per process.")
context = allocator.use_memory_pool(tag="weights")
else:
from contextlib import nullcontext
context = nullcontext()
eep_scale_up = os.environ.get("VLLM_ELASTIC_EP_SCALE_UP_LAUNCH") == "1"
with context:
with self._maybe_get_memory_pool_context(tag="weights"):
self.model_runner.load_model(eep_scale_up=eep_scale_up)
def update_config(self, overrides: dict[str, Any]) -> None:
self.model_runner.update_config(overrides)
def reload_weights(self) -> None:
with self._maybe_get_memory_pool_context(tag="weights"):
self.model_runner.reload_weights()
@torch.inference_mode()
def determine_available_memory(self) -> int:
"""Profiles the peak memory usage of the model to determine how much

View File

@ -1174,16 +1174,10 @@ class TPUModelRunner(LoRAModelRunnerMixin):
mesh=self.mesh)
else:
model_loader = get_model_loader(self.load_config)
if not hasattr(self, "model"):
logger.info("Loading model from scratch...")
model = model_loader.load_model(
vllm_config=self.vllm_config,
model_config=self.model_config)
else:
logger.info("Model was already initialized. \
Loading weights inplace...")
model_loader.load_weights(
self.model, model_config=self.model_config)
logger.info("Loading model from scratch...")
model = model_loader.load_model(
vllm_config=self.vllm_config,
model_config=self.model_config)
except RuntimeError as e:
raise RuntimeError(
f"Unable to load model, a likely reason is the model is "
@ -1205,6 +1199,13 @@ class TPUModelRunner(LoRAModelRunnerMixin):
self.model = model
self.sampler = TPUSampler()
def reload_weights(self) -> None:
assert getattr(self, "model", None) is not None, \
"Cannot reload weights before model is loaded."
model_loader = get_model_loader(self.load_config)
logger.info("Reloading weights inplace...")
model_loader.load_weights(self.model, model_config=self.model_config)
@torch.no_grad()
def _dummy_run(self, num_tokens: int, num_reqs: int,
num_blocks: int) -> None:

View File

@ -265,6 +265,9 @@ class TPUWorker:
def update_config(self, overrides: dict[str, Any]) -> None:
self.model_runner.update_config(overrides)
def reload_weights(self) -> None:
self.model_runner.reload_weights()
def compile_or_warm_up_model(self) -> None:
if not self.model_config.enforce_eager:
self.model_runner.capture_model()