Sm100 blockwise fp8 swap ab (#18564)

This commit is contained in:
Lain 2025-06-04 07:48:45 -07:00 committed by GitHub
parent 02658c2dfe
commit 5f2cd251d2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 139 additions and 83 deletions

View File

@ -9,10 +9,6 @@ void cutlass_scaled_mm_blockwise_sm100_fp8(torch::Tensor& out,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
TORCH_CHECK(
a.size(0) % 4 == 0,
"Input tensor must have a number of rows that is a multiple of 4. ",
"but got: ", a.size(0), " rows.");
if (out.dtype() == torch::kBFloat16) {
cutlass_gemm_blockwise_sm100_fp8_dispatch<cutlass::bfloat16_t>(
out, a, b, a_scales, b_scales);

View File

@ -1,5 +1,6 @@
#pragma once
#include "cuda_utils.h"
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
@ -22,49 +23,49 @@ namespace vllm {
using namespace cute;
template <typename OutType, typename MmaTileShape, typename ScalesPerTile,
class ClusterShape, typename EpilogueScheduler,
typename MainloopScheduler>
// clang-format off
template <class OutType, int ScaleGranularityM,
int ScaleGranularityN, int ScaleGranularityK,
class MmaTileShape, class ClusterShape,
class EpilogueScheduler, class MainloopScheduler,
bool swap_ab_ = false>
struct cutlass_3x_gemm_fp8_blockwise {
static constexpr bool swap_ab = swap_ab_;
using ElementAB = cutlass::float_e4m3_t;
using ElementA = ElementAB;
using LayoutA = cutlass::layout::RowMajor;
using LayoutA_Transpose = typename cutlass::layout::LayoutTranspose<LayoutA>::type;
static constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value;
using ElementB = ElementAB;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutB_Transpose = typename cutlass::layout::LayoutTranspose<LayoutB>::type;
static constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value;
using ElementC = void;
using ElementD = OutType;
using LayoutD = cutlass::layout::RowMajor;
using LayoutD_Transpose = typename cutlass::layout::LayoutTranspose<LayoutD>::type;
static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
using ElementC = void; // TODO: support bias
using LayoutC = LayoutD;
using LayoutC_Transpose = LayoutD_Transpose;
static constexpr int AlignmentC = AlignmentD;
using ElementAccumulator = float;
using ElementCompute = float;
using ElementBlockScale = float;
// MMA and Cluster Tile Shapes
// Shape of the tile computed by tcgen05 MMA, could be across 2 SMs if Cluster
// Shape %2 == 0 using MmaTileShape_MNK = Shape<_128,_128,_128>;
static constexpr int ScaleMsPerTile = size<0>(ScalesPerTile{});
static constexpr int ScaleGranularityM =
size<0>(MmaTileShape{}) / ScaleMsPerTile;
static constexpr int ScaleGranularityN =
size<1>(MmaTileShape{}) / size<1>(ScalesPerTile{});
static constexpr int ScaleGranularityK =
size<2>(MmaTileShape{}) / size<2>(ScalesPerTile{});
using ScaleConfig = conditional_t<swap_ab,
cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::K, cute::UMMA::Major::MN>,
cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::MN, cute::UMMA::Major::K>>;
// Shape of the threadblocks in a cluster
using ClusterShape_MNK = ClusterShape;
using ScaleConfig = cutlass::detail::Sm100BlockwiseScaleConfig<
ScaleGranularityM, ScaleGranularityN, ScaleGranularityK,
cute::UMMA::Major::MN, cute::UMMA::Major::K>;
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
using LayoutSFA = decltype(ScaleConfig::deduce_layoutSFA());
using LayoutSFB = decltype(ScaleConfig::deduce_layoutSFB());
@ -73,7 +74,6 @@ struct cutlass_3x_gemm_fp8_blockwise {
static constexpr auto RoundStyle = cutlass::FloatRoundStyle::round_to_nearest;
using ElementScalar = float;
// clang-format off
using DefaultOperation = cutlass::epilogue::fusion::LinearCombination<ElementD, ElementCompute, ElementC, ElementScalar, RoundStyle>;
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag,
@ -84,33 +84,47 @@ struct cutlass_3x_gemm_fp8_blockwise {
ElementAccumulator,
ElementCompute,
ElementC,
LayoutC,
conditional_t<swap_ab, LayoutC_Transpose, LayoutC>,
AlignmentC,
ElementD,
LayoutD,
conditional_t<swap_ab, LayoutD_Transpose, LayoutD>,
AlignmentD,
EpilogueScheduler,
DefaultOperation
>::CollectiveOp;
using StageCountType = cutlass::gemm::collective::StageCountAuto;
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementA,
cute::tuple<LayoutA, LayoutSFA>,
AlignmentA,
ElementB,
cute::tuple<LayoutB, LayoutSFB>,
AlignmentB,
ElementAccumulator,
MmaTileShape,
ClusterShape,
using CollectiveMainloop = conditional_t<swap_ab,
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementB,
cute::tuple<LayoutB_Transpose, LayoutSFA>,
AlignmentB,
ElementA,
cute::tuple<LayoutA_Transpose, LayoutSFB>,
AlignmentA,
ElementAccumulator,
MmaTileShape,
ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
MainloopScheduler
>::CollectiveOp;
// clang-format on
MainloopScheduler
>::CollectiveOp,
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag,
OperatorClass,
ElementA,
cute::tuple<LayoutA, LayoutSFA>,
AlignmentA,
ElementB,
cute::tuple<LayoutB, LayoutSFB>,
AlignmentB,
ElementAccumulator,
MmaTileShape,
ClusterShape,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
MainloopScheduler
>::CollectiveOp>;
using KernelType = enable_sm100_only<cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue>>;
@ -123,6 +137,7 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
static constexpr bool swap_ab = Gemm::swap_ab;
using GemmKernel = typename Gemm::GemmKernel;
using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
@ -136,7 +151,6 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
using ElementD = typename Gemm::ElementD;
int32_t m = a.size(0), n = b.size(1), k = a.size(1);
auto prob_shape = cute::make_shape(m, n, k, 1);
StrideA a_stride;
StrideB b_stride;
@ -146,11 +160,13 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
b_stride =
cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(n, k, 1));
c_stride =
cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(m, n, 1));
cutlass::make_cute_packed_stride(StrideC{}, swap_ab ? cute::make_shape(n, m, 1) : cute::make_shape(m, n, 1));
LayoutSFA layout_SFA =
LayoutSFA layout_SFA = swap_ab ?
ScaleConfig::tile_atom_to_shape_SFA(make_shape(n, m, k, 1)) :
ScaleConfig::tile_atom_to_shape_SFA(make_shape(m, n, k, 1));
LayoutSFB layout_SFB =
LayoutSFB layout_SFB = swap_ab ?
ScaleConfig::tile_atom_to_shape_SFB(make_shape(n, m, k, 1)) :
ScaleConfig::tile_atom_to_shape_SFB(make_shape(m, n, k, 1));
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
@ -158,9 +174,22 @@ void cutlass_gemm_caller_blockwise(torch::Tensor& out, torch::Tensor const& a,
auto a_scales_ptr = static_cast<float*>(a_scales.data_ptr());
auto b_scales_ptr = static_cast<float*>(b_scales.data_ptr());
typename GemmKernel::MainloopArguments mainloop_args{
a_ptr, a_stride, b_ptr, b_stride,
a_scales_ptr, layout_SFA, b_scales_ptr, layout_SFB};
auto mainloop_args = [&](){
// layout_SFA and layout_SFB cannot be swapped since they are deduced.
if (swap_ab) {
return typename GemmKernel::MainloopArguments{
b_ptr, b_stride, a_ptr, a_stride,
b_scales_ptr, layout_SFA, a_scales_ptr, layout_SFB
};
}
else {
return typename GemmKernel::MainloopArguments{
a_ptr, a_stride, b_ptr, b_stride,
a_scales_ptr, layout_SFA, b_scales_ptr, layout_SFB
};
}
}();
auto prob_shape = swap_ab ? cute::make_shape(n, m, k, 1) : cute::make_shape(m, n, k, 1);
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
typename GemmKernel::EpilogueArguments epilogue_args{
@ -175,29 +204,74 @@ void cutlass_gemm_blockwise_sm100_fp8_dispatch(torch::Tensor& out,
torch::Tensor const& b,
torch::Tensor const& a_scales,
torch::Tensor const& b_scales) {
auto m = a.size(0);
auto k = a.size(1);
auto n = b.size(1);
int sms;
int32_t m = a.size(0), n = b.size(1), k = a.size(1), sms;
cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, a.get_device());
auto should_use_2sm = [&sms](int m, int n, int tile1SM = 128) {
return std::ceil(static_cast<float>(m) / tile1SM) *
std::ceil(static_cast<float>(n) / tile1SM) >=
sms;
};
bool use_2sm = should_use_2sm(m, n);
if (use_2sm) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, Shape<_256, _128, _128>, Shape<_256, _1, _1>,
Shape<_2, _2, _1>, cutlass::epilogue::TmaWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
constexpr int TILE_K = 128;
// TODO: better heuristics
bool swap_ab = (m < 16) || (m % 4 != 0);
bool use_tma_epilogue = (m * n) % 4 == 0;
if (!swap_ab) {
constexpr int TILE_N = 128;
int tile_m = 256;
if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 64) <= sms) {
tile_m = 64;
}
else if (cuda_utils::ceil_div(n, TILE_N) * cuda_utils::ceil_div(m, 128) <= sms) {
tile_m = 128;
}
if (tile_m == 64) {
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_64, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
} else if (tile_m == 128) {
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_128, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
out, a, b, a_scales, b_scales);
}
} else { // tile_m == 256
if (use_tma_epilogue) {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
Shape<_2, _1, _1>, cutlass::epilogue::TmaWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
} else {
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, 1, TILE_N, TILE_K, Shape<_256, Int<TILE_N>, Int<TILE_K>>,
Shape<_2, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized2Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise2SmSm100>>(
out, a, b, a_scales, b_scales);
}
}
} else {
// TODO: Test more tile N configs
constexpr int TILE_M = 128;
constexpr int TILE_N = 16;
// TMA epilogue isn't compatible with Swap A/B
cutlass_gemm_caller_blockwise<cutlass_3x_gemm_fp8_blockwise<
OutType, Shape<_128, _128, _128>, Shape<_128, _1, _1>,
Shape<_1, _1, _1>, cutlass::epilogue::TmaWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100>>(
OutType, TILE_M, 1, TILE_K, Shape<Int<TILE_M>, Int<TILE_N>, Int<TILE_K>>,
Shape<_1, _1, _1>, cutlass::epilogue::NoSmemWarpSpecialized1Sm,
cutlass::gemm::KernelTmaWarpSpecializedBlockwise1SmSm100, true>>(
out, a, b, a_scales, b_scales);
}
}

View File

@ -136,24 +136,10 @@ def apply_w8a8_block_fp8_linear(
use_cutlass, use_aiter_and_is_supported)
if use_cutlass:
rows, cols = input_2d.shape
# Blackwell GPUs (SM100) require row dimensions to be multiple of 4 for
# optimal tensor core usage. Can be removed when targeting platforms
# without this constraint.
should_pad = current_platform.has_device_capability(
100) and rows % 4 != 0
if should_pad:
input_2d = torch.nn.functional.pad(input_2d,
(0, 0, 0, 4 - (rows % 4)),
value=0).contiguous()
q_input, x_scale = per_token_group_quant_fp8(
input_2d, block_size[1], column_major_scales=use_cutlass)
output = w8a8_blockscale_func(q_input, weight, x_scale, weight_scale,
block_size, input.dtype)
if should_pad:
output = output[:rows, :]
else:
q_input, x_scale = per_token_group_quant_fp8(