[Bugfix] Add kv cache scales to gemma2.py (#11269)

This commit is contained in:
Michael Goin 2024-12-23 14:30:45 -05:00 committed by GitHub
parent 63afbe9215
commit 60fb4f3bcf
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -31,11 +31,14 @@ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
RowParallelLinear) RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
get_compressed_tensors_cache_scale)
from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import ( from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding) VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors from vllm.sequence import IntermediateTensors
@ -326,6 +329,15 @@ class Gemma2Model(nn.Module):
params_dict = dict(self.named_parameters()) params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set() loaded_params: Set[str] = set()
for name, loaded_weight in weights: for name, loaded_weight in weights:
if scale_name := get_compressed_tensors_cache_scale(name):
# Loading kv cache scales for compressed-tensors quantization
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
loaded_weight = loaded_weight[0]
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
for (param_name, shard_name, shard_id) in stacked_params_mapping: for (param_name, shard_name, shard_id) in stacked_params_mapping:
if shard_name not in name: if shard_name not in name:
continue continue
@ -343,6 +355,10 @@ class Gemma2Model(nn.Module):
# Skip loading extra bias for GPTQ models. # Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict: if name.endswith(".bias") and name not in params_dict:
continue continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self): if is_pp_missing_parameter(name, self):
continue continue
param = params_dict[name] param = params_dict[name]