[TPU] Increase block size and reset block shapes (#16458)

This commit is contained in:
Jevin Jiang 2025-05-06 10:55:04 -07:00 committed by GitHub
parent 6115b11582
commit 621ca2c0ab
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 35 additions and 11 deletions

View File

@ -22,7 +22,8 @@ def main():
# In real workloads, `enforace_eager` should be `False`.
llm = LLM(model="Qwen/Qwen2-1.5B-Instruct",
max_num_batched_tokens=64,
max_num_seqs=4)
max_num_seqs=4,
max_model_len=128)
outputs = llm.generate(prompts, sampling_params)
print("-" * 50)
for output, answer in zip(outputs, answers):

View File

@ -18,9 +18,9 @@ setuptools==78.1.0
--find-links https://storage.googleapis.com/libtpu-releases/index.html
--find-links https://storage.googleapis.com/jax-releases/jax_nightly_releases.html
--find-links https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
torch==2.8.0.dev20250408
torchvision==0.22.0.dev20250408
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250408-cp39-cp39-linux_x86_64.whl ; python_version == "3.9"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250408-cp310-cp310-linux_x86_64.whl ; python_version == "3.10"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250408-cp311-cp311-linux_x86_64.whl ; python_version == "3.11"
torch==2.8.0.dev20250430
torchvision==0.22.0.dev20250430
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250430-cp39-cp39-linux_x86_64.whl ; python_version == "3.9"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250430-cp310-cp310-linux_x86_64.whl ; python_version == "3.10"
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250430-cp311-cp311-linux_x86_64.whl ; python_version == "3.11"

View File

@ -76,9 +76,9 @@ class TpuPlatform(Platform):
from vllm.config import CompilationLevel
cache_config = vllm_config.cache_config
# For v0, the default block size is 16.
if cache_config and cache_config.block_size is None:
cache_config.block_size = 16
compilation_config = vllm_config.compilation_config
# TPU only supports DYNAMO_ONCE compilation level
@ -101,16 +101,18 @@ class TpuPlatform(Platform):
if envs.VLLM_USE_V1:
from vllm.v1.attention.backends.pallas import (
PallasAttentionBackend)
cache_config.block_size = PallasAttentionBackend.get_page_size(
vllm_config)
min_page_size = PallasAttentionBackend.get_min_page_size(
vllm_config)
if min_page_size > vllm_config.cache_config.block_size:
if min_page_size > cache_config.block_size:
logger.warning(
"Increase the page size from %s to %s to make sure there's"
"no SMEM OOM",
vllm_config.cache_config.block_size,
cache_config.block_size,
min_page_size,
)
vllm_config.cache_config.block_size = min_page_size
cache_config.block_size = min_page_size
parallel_config = vllm_config.parallel_config
scheduler_config = vllm_config.scheduler_config

View File

@ -707,6 +707,13 @@ def cdiv(a: int, b: int) -> int:
return -(a // -b)
def next_power_of_2(n) -> int:
"""The next power of 2 (inclusive)"""
if n < 1:
return 1
return 1 << (n - 1).bit_length()
def round_up(x: int, y: int) -> int:
return ((x + y - 1) // y) * y

View File

@ -12,7 +12,7 @@ from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
from vllm.attention.backends.utils import CommonAttentionState
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.utils import cdiv
from vllm.utils import cdiv, next_power_of_2
logger = init_logger(__name__)
@ -65,6 +65,20 @@ class PallasAttentionBackend(AttentionBackend):
min_page_size = 1 << (min_page_size - 1).bit_length()
return min_page_size
# TPU has limited SREGs (scalar registers), if page_size is too small, we
# can spill SREGs easily which leads to bad performance. The strategy we
# apply here is trying to split max-model-len to 16 pages which make the
# spill less likely. Meanwhile we make sure the page size is in [16, 256].
@staticmethod
def get_page_size(vllm_config: VllmConfig) -> int:
page_size = next_power_of_2(
vllm_config.model_config.max_model_len) // 16
if page_size <= 16:
return 16
if page_size >= 256:
return 256
return page_size
@dataclass
class PallasMetadata: