mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 22:55:51 +08:00
[TPU] Increase block size and reset block shapes (#16458)
This commit is contained in:
parent
6115b11582
commit
621ca2c0ab
@ -22,7 +22,8 @@ def main():
|
||||
# In real workloads, `enforace_eager` should be `False`.
|
||||
llm = LLM(model="Qwen/Qwen2-1.5B-Instruct",
|
||||
max_num_batched_tokens=64,
|
||||
max_num_seqs=4)
|
||||
max_num_seqs=4,
|
||||
max_model_len=128)
|
||||
outputs = llm.generate(prompts, sampling_params)
|
||||
print("-" * 50)
|
||||
for output, answer in zip(outputs, answers):
|
||||
|
||||
@ -18,9 +18,9 @@ setuptools==78.1.0
|
||||
--find-links https://storage.googleapis.com/libtpu-releases/index.html
|
||||
--find-links https://storage.googleapis.com/jax-releases/jax_nightly_releases.html
|
||||
--find-links https://storage.googleapis.com/jax-releases/jaxlib_nightly_releases.html
|
||||
torch==2.8.0.dev20250408
|
||||
torchvision==0.22.0.dev20250408
|
||||
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250408-cp39-cp39-linux_x86_64.whl ; python_version == "3.9"
|
||||
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250408-cp310-cp310-linux_x86_64.whl ; python_version == "3.10"
|
||||
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250408-cp311-cp311-linux_x86_64.whl ; python_version == "3.11"
|
||||
torch==2.8.0.dev20250430
|
||||
torchvision==0.22.0.dev20250430
|
||||
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250430-cp39-cp39-linux_x86_64.whl ; python_version == "3.9"
|
||||
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250430-cp310-cp310-linux_x86_64.whl ; python_version == "3.10"
|
||||
torch_xla[tpu, pallas] @ https://storage.googleapis.com/pytorch-xla-releases/wheels/tpuvm/torch_xla-2.8.0.dev20250430-cp311-cp311-linux_x86_64.whl ; python_version == "3.11"
|
||||
|
||||
|
||||
@ -76,9 +76,9 @@ class TpuPlatform(Platform):
|
||||
from vllm.config import CompilationLevel
|
||||
|
||||
cache_config = vllm_config.cache_config
|
||||
# For v0, the default block size is 16.
|
||||
if cache_config and cache_config.block_size is None:
|
||||
cache_config.block_size = 16
|
||||
|
||||
compilation_config = vllm_config.compilation_config
|
||||
|
||||
# TPU only supports DYNAMO_ONCE compilation level
|
||||
@ -101,16 +101,18 @@ class TpuPlatform(Platform):
|
||||
if envs.VLLM_USE_V1:
|
||||
from vllm.v1.attention.backends.pallas import (
|
||||
PallasAttentionBackend)
|
||||
cache_config.block_size = PallasAttentionBackend.get_page_size(
|
||||
vllm_config)
|
||||
min_page_size = PallasAttentionBackend.get_min_page_size(
|
||||
vllm_config)
|
||||
if min_page_size > vllm_config.cache_config.block_size:
|
||||
if min_page_size > cache_config.block_size:
|
||||
logger.warning(
|
||||
"Increase the page size from %s to %s to make sure there's"
|
||||
"no SMEM OOM",
|
||||
vllm_config.cache_config.block_size,
|
||||
cache_config.block_size,
|
||||
min_page_size,
|
||||
)
|
||||
vllm_config.cache_config.block_size = min_page_size
|
||||
cache_config.block_size = min_page_size
|
||||
|
||||
parallel_config = vllm_config.parallel_config
|
||||
scheduler_config = vllm_config.scheduler_config
|
||||
|
||||
@ -707,6 +707,13 @@ def cdiv(a: int, b: int) -> int:
|
||||
return -(a // -b)
|
||||
|
||||
|
||||
def next_power_of_2(n) -> int:
|
||||
"""The next power of 2 (inclusive)"""
|
||||
if n < 1:
|
||||
return 1
|
||||
return 1 << (n - 1).bit_length()
|
||||
|
||||
|
||||
def round_up(x: int, y: int) -> int:
|
||||
return ((x + y - 1) // y) * y
|
||||
|
||||
|
||||
@ -12,7 +12,7 @@ from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
||||
from vllm.attention.backends.utils import CommonAttentionState
|
||||
from vllm.config import VllmConfig
|
||||
from vllm.logger import init_logger
|
||||
from vllm.utils import cdiv
|
||||
from vllm.utils import cdiv, next_power_of_2
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
@ -65,6 +65,20 @@ class PallasAttentionBackend(AttentionBackend):
|
||||
min_page_size = 1 << (min_page_size - 1).bit_length()
|
||||
return min_page_size
|
||||
|
||||
# TPU has limited SREGs (scalar registers), if page_size is too small, we
|
||||
# can spill SREGs easily which leads to bad performance. The strategy we
|
||||
# apply here is trying to split max-model-len to 16 pages which make the
|
||||
# spill less likely. Meanwhile we make sure the page size is in [16, 256].
|
||||
@staticmethod
|
||||
def get_page_size(vllm_config: VllmConfig) -> int:
|
||||
page_size = next_power_of_2(
|
||||
vllm_config.model_config.max_model_len) // 16
|
||||
if page_size <= 16:
|
||||
return 16
|
||||
if page_size >= 256:
|
||||
return 256
|
||||
return page_size
|
||||
|
||||
|
||||
@dataclass
|
||||
class PallasMetadata:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user