[Hardware] using current_platform.seed_everything (#9785)

Signed-off-by: wangshuai09 <391746016@qq.com>
This commit is contained in:
wangshuai09 2024-10-29 22:47:44 +08:00 committed by GitHub
parent 09500f7dde
commit 622b7ab955
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
27 changed files with 104 additions and 105 deletions

View File

@ -3,8 +3,8 @@ import time
import torch
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
seed_everything)
from vllm.platforms import current_platform
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
@torch.inference_mode()
@ -16,7 +16,7 @@ def main(num_tokens: int,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device("cuda")
layer = RMSNorm(hidden_size).to(dtype=dtype)

View File

@ -10,7 +10,8 @@ from ray.experimental.tqdm_ray import tqdm
from transformers import AutoConfig
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.utils import FlexibleArgumentParser, seed_everything
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
class BenchmarkConfig(TypedDict):
@ -167,7 +168,7 @@ class BenchmarkWorker:
def __init__(self, seed: int) -> None:
torch.set_default_device("cuda")
seed_everything(seed)
current_platform.seed_everything(seed)
self.seed = seed
def benchmark(
@ -181,7 +182,7 @@ class BenchmarkWorker:
use_fp8_w8a8: bool,
use_int8_w8a16: bool,
) -> Tuple[Dict[str, int], float]:
seed_everything(self.seed)
current_platform.seed_everything(self.seed)
dtype_str = get_config_dtype_str(dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8)

View File

@ -5,8 +5,9 @@ from typing import List, Optional
import torch
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
create_kv_caches_with_random, seed_everything)
create_kv_caches_with_random)
NUM_BLOCKS = 1024
PARTITION_SIZE = 512
@ -28,7 +29,7 @@ def main(
device: str = "cuda",
kv_cache_dtype: Optional[str] = None,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
scale = float(1.0 / (head_size**0.5))
query = torch.empty(num_seqs,

View File

@ -3,8 +3,8 @@ import time
import torch
from vllm import _custom_ops as ops
from vllm.utils import (STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser,
seed_everything)
from vllm.platforms import current_platform
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, FlexibleArgumentParser
@torch.inference_mode()
@ -17,7 +17,7 @@ def main(num_tokens: int,
do_profile: bool = False,
num_warmup_iters: int = 5,
num_iters: int = 100) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device("cuda")
x = torch.randn(num_tokens, hidden_size, dtype=dtype)

View File

@ -6,7 +6,8 @@ import torch
from vllm.model_executor.layers.rotary_embedding import (RotaryEmbedding,
get_rope)
from vllm.utils import FlexibleArgumentParser, seed_everything
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
def benchmark_rope_kernels_multi_lora(
@ -22,7 +23,7 @@ def benchmark_rope_kernels_multi_lora(
max_position: int = 8192,
base: int = 10000,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size

View File

@ -8,7 +8,7 @@ from tests.kernels.utils import opcheck
from vllm.model_executor.layers.activation import (FastGELU, FatreluAndMul,
GeluAndMul, NewGELU,
QuickGELU, SiluAndMul)
from vllm.utils import seed_everything
from vllm.platforms import current_platform
from .allclose_default import get_default_atol, get_default_rtol
@ -37,7 +37,7 @@ def test_act_and_mul(
seed: int,
device: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
x = torch.randn(num_tokens, 2 * d, dtype=dtype)
if activation == "silu":
@ -85,7 +85,7 @@ def test_activation(
seed: int,
device: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
x = torch.randn(num_tokens, d, dtype=dtype)
layer = activation[0]()

View File

@ -7,7 +7,7 @@ import torch
from tests.kernels.utils import opcheck
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.utils import get_max_shared_memory_bytes, seed_everything
from vllm.utils import get_max_shared_memory_bytes
from .allclose_default import get_default_atol, get_default_rtol
@ -144,7 +144,7 @@ def test_paged_attention(
or (version == "rocm" and head_size not in (64, 128))):
pytest.skip()
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
scale = float(1.0 / (head_size**0.5))
num_query_heads, num_kv_heads = num_heads
@ -382,7 +382,7 @@ def test_multi_query_kv_attention(
seed: int,
device: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
# MAX_SEQ_LEN sometimes causes OOM in the reference implementation.
# As the xformers library is already tested with its own tests, we can use

View File

@ -7,7 +7,7 @@ import torch
from vllm.model_executor.layers.quantization.awq_triton import (
AWQ_TRITON_SUPPORTED_GROUP_SIZES, awq_dequantize_triton, awq_gemm_triton)
from vllm.utils import seed_everything
from vllm.platforms import current_platform
device = "cuda"
@ -80,7 +80,7 @@ def test_dequantize(qweight_rows, qweight_cols, group_size):
zeros_cols = qweight_cols
zeros_dtype = torch.int32
seed_everything(0)
current_platform.seed_everything(0)
qweight = torch.randint(0,
torch.iinfo(torch.int32).max,
@ -134,7 +134,7 @@ def test_gemm(N, K, M, splitK, group_size):
qzeros_rows = scales_rows
qzeros_cols = qweight_cols
seed_everything(0)
current_platform.seed_everything(0)
input = torch.rand((input_rows, input_cols),
dtype=input_dtype,

View File

@ -8,7 +8,7 @@ from vllm import _custom_ops as ops
from vllm.attention.ops.blocksparse_attention.interface import (
LocalStridedBlockSparseAttn)
from vllm.platforms import current_platform
from vllm.utils import get_max_shared_memory_bytes, seed_everything
from vllm.utils import get_max_shared_memory_bytes
from .allclose_default import get_default_atol, get_default_rtol
@ -173,7 +173,7 @@ def test_paged_attention(
blocksparse_block_size: int,
blocksparse_head_sliding_step: int,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
scale = float(1.0 / (head_size**0.5))
num_query_heads, num_kv_heads = num_heads
@ -384,7 +384,7 @@ def test_varlen_blocksparse_attention_prefill(
seed: int,
device: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
# MAX_SEQ_LEN sometimes causes OOM in the reference implementation.
# As the xformers library is already tested with its own tests, we can use

View File

@ -6,7 +6,7 @@ import torch
from tests.kernels.utils import DEFAULT_OPCHECK_TEST_UTILS, opcheck
from vllm import _custom_ops as ops
from vllm.utils import seed_everything
from vllm.platforms import current_platform
COPYING_DIRECTION = [('cuda', 'cpu'), ('cuda', 'cuda'), ('cpu', 'cuda')]
DTYPES = [torch.half, torch.bfloat16, torch.float]
@ -56,7 +56,7 @@ def test_copy_blocks(
) -> None:
if kv_cache_dtype == "fp8" and head_size % 16:
pytest.skip()
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
# Generate random block mappings where each source block is mapped to two
# destination blocks.
@ -132,7 +132,7 @@ def test_reshape_and_cache(
) -> None:
if kv_cache_dtype == "fp8" and head_size % 16:
pytest.skip()
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
# Create a random slot mapping.
num_slots = block_size * num_blocks
@ -224,7 +224,7 @@ def test_reshape_and_cache_flash(
device: str,
kv_cache_dtype: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
# Create a random slot mapping.
@ -339,7 +339,7 @@ def test_swap_blocks(
if kv_cache_dtype == "fp8" and head_size % 16:
pytest.skip()
seed_everything(seed)
current_platform.seed_everything(seed)
src_device = device if direction[0] == "cuda" else 'cpu'
dst_device = device if direction[1] == "cuda" else 'cpu'
@ -408,7 +408,7 @@ def test_fp8_e4m3_conversion(
seed: int,
device: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
low = -224.0
high = 224.0

View File

@ -9,7 +9,7 @@ from vllm import _custom_ops as ops # noqa: F401
from vllm.attention.backends.utils import PAD_SLOT_ID
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
causal_conv1d_fn, causal_conv1d_update)
from vllm.utils import seed_everything
from vllm.platforms import current_platform
def causal_conv1d_ref(
@ -70,7 +70,7 @@ def causal_conv1d_update_ref(x,
bias: (dim,)
cache_seqlens: (batch,), dtype int32.
If not None, the conv_state is treated as a circular buffer.
The conv_state will be updated by copying x to the
The conv_state will be updated by copying x to the
conv_state starting at the index
@cache_seqlens % state_len before performing the convolution.
@ -161,7 +161,7 @@ def test_causal_conv1d(batch, dim, seqlen, width, has_bias, silu_activation,
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
# set seed
seed_everything(0)
current_platform.seed_everything(0)
x = torch.randn(batch, dim, seqlen, device=device,
dtype=itype).contiguous()
@ -223,7 +223,7 @@ def test_causal_conv1d_update(dim, width, seqlen, has_bias, silu_activation,
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
# set seed
seed_everything(0)
current_platform.seed_everything(0)
batch = 2
x = torch.randn(batch, dim, seqlen, device=device, dtype=itype)
x_ref = x.clone()
@ -270,7 +270,7 @@ def test_causal_conv1d_update_with_batch_gather(with_padding, dim, width,
rtol, atol = 1e-2, 5e-2
# set seed
seed_everything(0)
current_platform.seed_everything(0)
batch_size = 3
padding = 5 if with_padding else 0
@ -343,7 +343,7 @@ def test_causal_conv1d_varlen(with_padding, dim, seqlen, width, has_bias,
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
# set seed
seed_everything(0)
current_platform.seed_everything(0)
seqlens = []
batch_size = 4
if seqlen < 10:

View File

@ -3,7 +3,7 @@ from typing import List, Optional, Tuple
import pytest
import torch
from vllm.utils import seed_everything
from vllm.platforms import current_platform
from vllm.vllm_flash_attn import (flash_attn_varlen_func,
flash_attn_with_kvcache)
@ -91,7 +91,7 @@ def test_flash_attn_with_paged_kv(
sliding_window: Optional[int],
) -> None:
torch.set_default_device("cuda")
seed_everything(0)
current_platform.seed_everything(0)
num_seqs = len(kv_lens)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
@ -161,7 +161,7 @@ def test_varlen_with_paged_kv(
num_blocks: int,
) -> None:
torch.set_default_device("cuda")
seed_everything(0)
current_platform.seed_everything(0)
num_seqs = len(seq_lens)
query_lens = [x[0] for x in seq_lens]
kv_lens = [x[1] for x in seq_lens]

View File

@ -4,7 +4,7 @@ import flashinfer
import pytest
import torch
from vllm.utils import seed_everything
from vllm.platforms import current_platform
NUM_HEADS = [(16, 16), (32, 8), (64, 8), (6, 1)]
HEAD_SIZES = [128, 256]
@ -84,7 +84,7 @@ def test_flashinfer_decode_with_paged_kv(
soft_cap: Optional[float],
) -> None:
torch.set_default_device("cuda")
seed_everything(0)
current_platform.seed_everything(0)
num_seqs = len(kv_lens)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]
@ -170,7 +170,7 @@ def test_flashinfer_prefill_with_paged_kv(seq_lens: List[Tuple[int, int]],
block_size: int,
soft_cap: Optional[float]) -> None:
torch.set_default_device("cuda")
seed_everything(0)
current_platform.seed_everything(0)
num_seqs = len(seq_lens)
query_lens = [x[0] for x in seq_lens]
kv_lens = [x[1] for x in seq_lens]
@ -268,7 +268,7 @@ def test_flashinfer_prefill_with_paged_fp8_kv(
head_size: int, dtype: torch.dtype, block_size: int,
soft_cap: Optional[float]) -> None:
torch.set_default_device("cuda")
seed_everything(0)
current_platform.seed_everything(0)
num_seqs = len(seq_lens)
query_lens = [x[0] for x in seq_lens]
kv_lens = [x[1] for x in seq_lens]
@ -381,7 +381,7 @@ def test_flashinfer_decode_with_paged_fp8_kv(
) -> None:
# test doesn't work for num_heads = (16,16)
torch.set_default_device("cuda")
seed_everything(0)
current_platform.seed_everything(0)
num_seqs = len(kv_lens)
num_query_heads = num_heads[0]
num_kv_heads = num_heads[1]

View File

@ -6,7 +6,7 @@ from tests.kernels.quant_utils import (FP8_DTYPE,
ref_dynamic_per_tensor_fp8_quant,
ref_dynamic_per_token_quant)
from tests.kernels.utils import opcheck
from vllm.utils import seed_everything
from vllm.platforms import current_platform
DTYPES = [torch.half, torch.bfloat16, torch.float]
HIDDEN_SIZES = [1, 2, 3, 4, 16, 67, 768, 2048, 5120, 5137, 8192,
@ -46,7 +46,7 @@ def opcheck_fp8_quant(output,
def test_dynamic_per_token_fp8_quant(num_tokens: int, hidden_size: int,
dtype: torch.dtype, scale_ub: bool,
seed: int) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
x = torch.rand(num_tokens, hidden_size, dtype=dtype,
device="cuda") + 1e-6 # avoid nans
@ -76,7 +76,7 @@ def test_dynamic_per_token_fp8_quant(num_tokens: int, hidden_size: int,
@torch.inference_mode()
def test_dynamic_per_tensor_fp8_quant(num_tokens: int, hidden_size: int,
dtype: torch.dtype, seed: int) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda")
@ -95,7 +95,7 @@ def test_dynamic_per_tensor_fp8_quant(num_tokens: int, hidden_size: int,
@torch.inference_mode()
@pytest.mark.parametrize("seed", SEEDS)
def test_fp8_quant_large(seed: int) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
num_tokens = 1024000 # Mistral-Nemo's max_position_embeddings
hidden_size = 1152 # Smallest hidden_size to reproduce the error

View File

@ -7,7 +7,7 @@ from gguf import GGMLQuantizationType, GGUFReader, ReaderTensor, dequantize
from huggingface_hub import snapshot_download
import vllm._custom_ops as ops
from vllm.utils import seed_everything
from vllm.platforms import current_platform
GGUF_SAMPLE = snapshot_download("Isotr0py/test-gguf-sample")
@ -75,7 +75,7 @@ def test_dequantize(hidden_size: int, dtype: torch.dtype,
@torch.inference_mode()
def test_mmvq(hidden_size: int, dtype: torch.dtype,
quant_type: GGMLQuantizationType):
seed_everything(0)
current_platform.seed_everything(0)
tensors = get_gguf_sample_tensors(hidden_size, quant_type)
x = torch.rand((1, hidden_size), dtype=dtype, device="cuda")
@ -111,7 +111,7 @@ def test_mmvq(hidden_size: int, dtype: torch.dtype,
@torch.inference_mode()
def test_mmq(num_tokens: int, hidden_size: int, dtype: torch.dtype,
quant_type: GGMLQuantizationType):
seed_everything(0)
current_platform.seed_everything(0)
tensors = get_gguf_sample_tensors(hidden_size, quant_type)
x = torch.rand((num_tokens, hidden_size), dtype=dtype, device="cuda")

View File

@ -4,7 +4,7 @@ import torch
from tests.kernels.quant_utils import ref_dynamic_per_token_quant
from tests.kernels.utils import opcheck
from vllm._custom_ops import scaled_int8_quant
from vllm.utils import seed_everything
from vllm.platforms import current_platform
DTYPES = [torch.half, torch.bfloat16, torch.float]
HIDDEN_SIZES = [16, 67, 768, 2048, 5120, 5137, 8192,
@ -45,7 +45,7 @@ def opcheck_int8_quant_dynamic(output, input, symmetric=True):
@torch.inference_mode()
def test_dynamic_scaled_int8_quant(num_tokens: int, hidden_size: int,
dtype: torch.dtype, seed: int) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda") * 1000
@ -68,7 +68,7 @@ def test_dynamic_scaled_int8_quant(num_tokens: int, hidden_size: int,
@torch.inference_mode()
def test_dynamic_scaled_int8_azp_quant(num_tokens: int, hidden_size: int,
dtype: torch.dtype, seed: int) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
int8_traits = torch.iinfo(torch.int8)
x = torch.rand(num_tokens, hidden_size, dtype=dtype,
@ -112,7 +112,7 @@ def test_dynamic_scaled_int8_azp_quant(num_tokens: int, hidden_size: int,
def test_static_scaled_int8_quant(num_tokens: int, hidden_size: int,
dtype: torch.dtype, seed: int,
scale: float) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
int8_traits = torch.iinfo(torch.int8)
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda") * 1000
@ -138,7 +138,7 @@ def test_static_scaled_int8_quant(num_tokens: int, hidden_size: int,
def test_static_scaled_int8_azp_quant(num_tokens: int, hidden_size: int,
dtype: torch.dtype, seed: int,
scale: float, azp: int) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
int8_traits = torch.iinfo(torch.int8)
x = torch.rand(num_tokens, hidden_size, dtype=dtype,

View File

@ -3,7 +3,7 @@ import torch
from tests.kernels.utils import opcheck
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.utils import seed_everything
from vllm.platforms import current_platform
DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_TOKENS = [7, 83, 4096] # Arbitrary values for testing
@ -31,7 +31,7 @@ def test_rms_norm(
seed: int,
device: str,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
layer = RMSNorm(hidden_size).to(dtype=dtype)
layer.weight.data.normal_(mean=1.0, std=0.1)

View File

@ -8,7 +8,7 @@ from vllm import _custom_ops as ops # noqa: F401
from vllm.attention.backends.utils import PAD_SLOT_ID
from vllm.model_executor.layers.mamba.ops.mamba_ssm import (
selective_scan_fn, selective_state_update)
from vllm.utils import seed_everything
from vllm.platforms import current_platform
def selective_state_update_ref(state,
@ -235,7 +235,7 @@ def test_selective_scan(is_variable_B, is_variable_C, varBC_groups, has_D,
rtolw = max(rtolw, rtol)
atolw = max(atolw, atol)
# set seed
seed_everything(0)
current_platform.seed_everything(0)
batch_size = 1
dim = 4
dstate = 8
@ -358,7 +358,7 @@ def test_selective_state_update(dim, dstate, has_z, itype):
if torch.version.hip:
atol *= 2
# set seed
seed_everything(0)
current_platform.seed_everything(0)
batch_size = 1
state = torch.randn(batch_size, dim, dstate, dtype=itype, device=device)
x = torch.randn(batch_size, dim, device=device, dtype=itype)

View File

@ -19,7 +19,6 @@ from vllm.model_executor.layers.quantization.utils.marlin_utils_test import (
from vllm.model_executor.models.mixtral import MixtralMoE
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
from vllm.utils import seed_everything
@pytest.mark.parametrize("m", [1024 * 128, 512, 222, 33, 1])
@ -115,7 +114,7 @@ def test_fused_marlin_moe(
num_bits: int,
is_k_full: bool,
):
seed_everything(7)
current_platform.seed_everything(7)
# Filter act_order
if act_order:

View File

@ -5,7 +5,7 @@ import pytest
import torch
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.utils import seed_everything
from vllm.platforms import current_platform
from .allclose_default import get_default_atol, get_default_rtol
@ -48,7 +48,7 @@ def test_rotary_embedding(
if rotary_dim is None:
rotary_dim = head_size
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
@ -100,7 +100,7 @@ def test_batched_rotary_embedding(
max_position: int = 8192,
base: int = 10000,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
@ -160,7 +160,7 @@ def test_batched_rotary_embedding_multi_lora(
max_position: int = 8192,
base: int = 10000,
) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size

View File

@ -9,7 +9,8 @@ from xformers.ops.fmha.attn_bias import BlockDiagonalCausalFromBottomRightMask
from vllm.attention.backends.xformers import _make_alibi_bias
from vllm.attention.ops.prefix_prefill import context_attention_fwd
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, seed_everything
from vllm.platforms import current_platform
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE
NUM_HEADS = [64]
NUM_QUERIES_PER_KV = [1, 8, 64]
@ -39,7 +40,7 @@ def test_contexted_kv_attention(
kv_cache_dtype: str,
device: str,
) -> None:
seed_everything(0)
current_platform.seed_everything(0)
torch.set_default_device(device)
# Need this, otherwise when we capture the graph the process
@ -234,7 +235,7 @@ def test_contexted_kv_attention_alibi(
kv_cache_dtype: str,
device: str,
) -> None:
seed_everything(0)
current_platform.seed_everything(0)
torch.set_default_device(device)
# Need this, otherwise when we capture the graph the process

View File

@ -39,7 +39,7 @@ from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding, get_masked_input_and_mask)
from vllm.model_executor.utils import set_random_seed
from vllm.utils import seed_everything
from vllm.platforms import current_platform
from .utils import DummyLoRAManager
@ -923,7 +923,7 @@ def test_rotary_embedding_long_context(dist_init, num_loras, device,
seq_len) -> None:
dtype = torch.float16
seed = 0
seed_everything(seed)
current_platform.seed_everything(seed)
torch.set_default_device(device)
punica_wrapper = PunicaWrapper(8192, 256, device)
max_loras = 8

View File

@ -1,5 +1,5 @@
"""
This script is mainly used to tests various hidden_sizes. We have collected the
This script is mainly used to tests various hidden_sizes. We have collected the
hidden_sizes included in the LoRA models currently supported by vLLM. It tests
whether the corresponding Triton kernel can run normally when tensor parallelism
is set to [1, 2, 4, 8, 16, 32, 64].
@ -15,8 +15,8 @@ from vllm.lora.ops.bgmv_shrink import bgmv_shrink
from vllm.lora.ops.sgmv_expand import sgmv_expand
from vllm.lora.ops.sgmv_expand_slice import sgmv_expand_slice
from vllm.lora.ops.sgmv_shrink import sgmv_shrink
from vllm.platforms import current_platform
from vllm.triton_utils.libentry import LibEntry
from vllm.utils import seed_everything
from .utils import (generate_data, generate_data_for_expand_nslices,
ref_torch_groupgemm)
@ -146,7 +146,7 @@ def test_punica_sgmv(
device: str,
):
torch.set_default_device(device)
seed_everything(seed)
current_platform.seed_everything(seed)
seq_length = 128
(
@ -239,7 +239,7 @@ def test_punica_bgmv(
from vllm.lora.ops.bgmv_shrink import _bgmv_shrink_kernel
torch.set_default_device(device)
seed_everything(seed)
current_platform.seed_everything(seed)
seq_length = 1
(
@ -327,7 +327,7 @@ def test_punica_expand_nslices(
from vllm.lora.ops.bgmv_expand_slice import _bgmv_expand_slice_kernel
torch.set_default_device(device)
seed_everything(seed)
current_platform.seed_everything(seed)
seq_length = 128 if op_type == "sgmv" else 1
(

View File

@ -1,6 +1,6 @@
"""
This script is mainly used to test whether trtion kernels can run normally
under different conditions, including various batches, numbers of LoRA , and
This script is mainly used to test whether trtion kernels can run normally
under different conditions, including various batches, numbers of LoRA , and
maximum ranks.
"""
from unittest.mock import patch
@ -14,8 +14,8 @@ from vllm.lora.ops.bgmv_shrink import bgmv_shrink
from vllm.lora.ops.sgmv_expand import sgmv_expand
from vllm.lora.ops.sgmv_expand_slice import sgmv_expand_slice
from vllm.lora.ops.sgmv_shrink import sgmv_shrink
from vllm.platforms import current_platform
from vllm.triton_utils.libentry import LibEntry
from vllm.utils import seed_everything
from .utils import (generate_data, generate_data_for_expand_nslices,
ref_torch_groupgemm)
@ -61,7 +61,7 @@ def test_punica_sgmv(
device: str,
):
torch.set_default_device(device)
seed_everything(seed)
current_platform.seed_everything(seed)
seq_length = 128
(
@ -154,7 +154,7 @@ def test_punica_bgmv(
from vllm.lora.ops.bgmv_shrink import _bgmv_shrink_kernel
torch.set_default_device(device)
seed_everything(seed)
current_platform.seed_everything(seed)
seq_length = 1
(
@ -242,7 +242,7 @@ def test_punica_expand_nslices(
from vllm.lora.ops.bgmv_expand_slice import _bgmv_expand_slice_kernel
torch.set_default_device(device)
seed_everything(seed)
current_platform.seed_everything(seed)
seq_length = 128 if op_type == "sgmv" else 1
(

View File

@ -4,11 +4,10 @@ from typing import Any, Dict, Optional
import torch
from vllm.platforms import current_platform
from vllm.utils import seed_everything
def set_random_seed(seed: int) -> None:
seed_everything(seed)
current_platform.seed_everything(seed)
def set_weight_attrs(

View File

@ -1,6 +1,8 @@
import enum
import random
from typing import NamedTuple, Optional, Tuple, Union
import numpy as np
import torch
@ -111,6 +113,18 @@ class Platform:
"""
return torch.inference_mode(mode=True)
@classmethod
def seed_everything(cls, seed: int) -> None:
"""
Set the seed of each random module.
`torch.manual_seed` will set seed on all devices.
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
class UnspecifiedPlatform(Platform):
_enum = PlatformEnum.UNSPECIFIED

View File

@ -7,7 +7,6 @@ import gc
import inspect
import ipaddress
import os
import random
import socket
import subprocess
import sys
@ -331,22 +330,6 @@ def get_cpu_memory() -> int:
return psutil.virtual_memory().total
def seed_everything(seed: int) -> None:
"""
Set the seed of each random module.
Loosely based on: https://github.com/Lightning-AI/pytorch-lightning/blob/2.4.0/src/lightning/fabric/utilities/seed.py#L20
"""
random.seed(seed)
np.random.seed(seed)
if current_platform.is_cuda_alike():
torch.cuda.manual_seed_all(seed)
if current_platform.is_xpu():
torch.xpu.manual_seed_all(seed)
def random_uuid() -> str:
return str(uuid.uuid4().hex)
@ -643,7 +626,7 @@ def create_kv_caches_with_random_flash(
seed: int = 0,
device: Optional[str] = "cuda",
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
seed_everything(seed)
current_platform.seed_everything(seed)
torch_dtype = get_kv_cache_torch_dtype(cache_dtype, model_dtype)
key_value_cache_shape = (num_blocks, 2, block_size, num_heads, head_size)
@ -685,7 +668,7 @@ def create_kv_caches_with_random(
f"Does not support key cache of type fp8 with head_size {head_size}"
)
seed_everything(seed)
current_platform.seed_everything(seed)
torch_dtype = get_kv_cache_torch_dtype(cache_dtype, model_dtype)