[Bugfix] Fix multi-modal processors for transformers 4.48 (#12187)

This commit is contained in:
Cyrus Leung 2025-01-19 11:16:34 +08:00 committed by GitHub
parent 4e94951bb1
commit 630eb5b5ce
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 198 additions and 35 deletions

View File

@ -5,9 +5,11 @@ from typing import (Final, Iterable, List, Literal, Mapping, Optional,
import torch
import torch.nn as nn
from packaging.version import Version
from transformers import (BatchFeature, CLIPVisionConfig, LlavaConfig,
PixtralVisionConfig, PretrainedConfig,
SiglipVisionConfig)
from transformers import __version__ as TRANSFORMERS_VERSION
from transformers.models.llava import LlavaProcessor
from transformers.models.pixtral import PixtralProcessor
@ -716,6 +718,27 @@ class LlavaForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
return loader.load_weights(weights)
class MantisProcessingInfo(LlavaProcessingInfo):
def get_hf_processor(self):
hf_config = self.get_hf_config()
vision_info = self.get_vision_encoder_info()
if Version(TRANSFORMERS_VERSION) < Version("4.48"):
# BUG: num_additional_image_tokens = 0 but treated as 1,
# so we set vision_feature_select_strategy to None to offset this
vision_feature_select_strategy = None
else:
# FIXED: https://github.com/huggingface/transformers/pull/33424/files#diff-6a37acc21efcadaae622b079b2712a131131448ff64262bd219aa346aeec38faL150
vision_feature_select_strategy = hf_config.vision_feature_select_strategy # noqa: E501
return self.ctx.get_hf_processor(
LlavaProcessor,
patch_size=vision_info.get_patch_size(),
vision_feature_select_strategy=vision_feature_select_strategy,
)
class MantisMultiModalProcessor(LlavaMultiModalProcessor):
def apply(
@ -794,7 +817,7 @@ class MantisMultiModalProcessor(LlavaMultiModalProcessor):
# To use this model, please use
# `--hf_overrides '{"architectures": ["MantisForConditionalGeneration"]}'`
@MULTIMODAL_REGISTRY.register_processor(MantisMultiModalProcessor,
info=LlavaProcessingInfo,
info=MantisProcessingInfo,
dummy_inputs=LlavaDummyInputsBuilder)
class MantisForConditionalGeneration(LlavaForConditionalGeneration):
pass

View File

@ -36,8 +36,9 @@ from vllm.config import VllmConfig
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
NestedTensors)
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalInputsV2, MultiModalKwargs,
NestedTensors, PlaceholderRange)
from vllm.multimodal.parse import (AudioProcessorItems, MultiModalDataItems,
MultiModalDataParser)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
@ -153,29 +154,24 @@ class Qwen2AudioMultiModalProcessor(
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, Any],
) -> BatchFeature:
mm_data = dict(mm_data)
audios = mm_data.pop("audios", [])
# Text-only input not supported in composite processor
if not mm_data or not mm_data.get("audios", []):
prompt_ids = self.info.get_tokenizer().encode(prompt)
prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
if audios:
mm_data["audios"] = audios
feature_extractor = self.info.get_feature_extractor(**mm_kwargs)
mm_kwargs = dict(
**mm_kwargs,
sampling_rate=feature_extractor.sampling_rate,
)
feature_extractor = self.info.get_feature_extractor(**mm_kwargs)
mm_kwargs = dict(
**mm_kwargs,
sampling_rate=feature_extractor.sampling_rate,
)
else:
# NOTE: WhisperFeatureExtractor cannot handle empty list of audios
pass
processed_outputs = super()._call_hf_processor(
return super()._call_hf_processor(
prompt=prompt,
mm_data=mm_data,
mm_kwargs=mm_kwargs,
)
return processed_outputs
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
@ -192,8 +188,14 @@ class Qwen2AudioMultiModalProcessor(
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> list[PromptReplacement]:
hf_config = self.info.get_hf_config()
placeholder = hf_config.audio_token_index
processor = self.info.get_hf_processor()
# Use getattr with default to be compatible with transformers<4.48
audio_token = getattr(processor, "audio_token", "<|AUDIO|>")
audio_bos_token = getattr(processor, "audio_bos_token",
"<|audio_bos|>")
audio_eos_token = getattr(processor, "audio_eos_token",
"<|audio_eos|>")
feature_attention_mask = out_mm_kwargs.get("feature_attention_mask")
if feature_attention_mask is None:
@ -214,12 +216,16 @@ class Qwen2AudioMultiModalProcessor(
f"The audio {audio} (len={len(audio)}) is too short "
"to be represented inside the model")
return [placeholder] * num_placeholders
return "".join([
audio_bos_token,
audio_token * num_placeholders,
audio_eos_token,
])
return [
PromptReplacement(
modality="audio",
target=[placeholder],
target=audio_token,
replacement=get_replacement_qwen2_audio,
)
]
@ -234,6 +240,26 @@ class Qwen2AudioMultiModalProcessor(
# tokens than the number of audio items)
return not hasattr(self.info.get_hf_processor(), "audio_token")
def apply(
self,
prompt: Union[str, list[int]],
mm_data: MultiModalDataDict,
hf_processor_mm_kwargs: Mapping[str, object],
) -> MultiModalInputsV2:
result = super().apply(prompt, mm_data, hf_processor_mm_kwargs)
# Only <|AUDIO|> tokens should be considered as placeholders,
# so we ignore the audio_bos_token and audio_eos_token
result["mm_placeholders"] = {
modality: [
PlaceholderRange(offset=p["offset"] + 1,
length=p["length"] - 2) for p in ps
]
for modality, ps in result["mm_placeholders"].items()
}
return result
@MULTIMODAL_REGISTRY.register_processor(
Qwen2AudioMultiModalProcessor,

View File

@ -137,7 +137,7 @@ class UltravoxMultiModalProcessor(
mm_kwargs: Mapping[str, object],
) -> BatchFeature:
# Text-only input not supported in composite processor
if not mm_data:
if not mm_data or not mm_data.get("audios", []):
prompt_ids = self.info.get_tokenizer().encode(prompt)
prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
@ -146,13 +146,6 @@ class UltravoxMultiModalProcessor(
audios = mm_data.pop("audios", [])
assert isinstance(audios, list)
if not audios:
return super()._call_hf_processor(
prompt=prompt,
mm_data=mm_data,
mm_kwargs=mm_kwargs,
)
feature_extractor = self.info.get_feature_extractor()
mm_kwargs = dict(
**mm_kwargs,

View File

@ -22,10 +22,10 @@ from vllm.envs import VLLM_USE_MODELSCOPE
from vllm.logger import init_logger
# yapf conflicts with isort for this block
# yapf: disable
from vllm.transformers_utils.configs import (ChatGLMConfig, Cohere2Config,
DbrxConfig, DeepseekVLV2Config,
EAGLEConfig, ExaoneConfig,
H2OVLChatConfig,
from vllm.transformers_utils.configs import (AriaConfig, ChatGLMConfig,
Cohere2Config, DbrxConfig,
DeepseekVLV2Config, EAGLEConfig,
ExaoneConfig, H2OVLChatConfig,
InternVLChatConfig, JAISConfig,
MedusaConfig, MllamaConfig,
MLPSpeculatorConfig, MPTConfig,
@ -52,6 +52,7 @@ _CONFIG_REGISTRY_OVERRIDE_HF: Dict[str, Type[PretrainedConfig]] = {
}
_CONFIG_REGISTRY: Dict[str, Type[PretrainedConfig]] = {
"aria": AriaConfig,
"chatglm": ChatGLMConfig,
"cohere2": Cohere2Config,
"dbrx": DbrxConfig,

View File

@ -1,3 +1,4 @@
from vllm.transformers_utils.configs.aria import AriaConfig
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
from vllm.transformers_utils.configs.cohere2 import Cohere2Config
from vllm.transformers_utils.configs.dbrx import DbrxConfig
@ -23,6 +24,7 @@ from vllm.transformers_utils.configs.telechat2 import Telechat2Config
from vllm.transformers_utils.configs.ultravox import UltravoxConfig
__all__ = [
"AriaConfig",
"ChatGLMConfig",
"Cohere2Config",
"DbrxConfig",

View File

@ -1,7 +1,32 @@
# Copyright 2024 Rhymes AI. All rights reserved.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Mapping
from transformers import PretrainedConfig
from transformers.models.idefics2.configuration_idefics2 import (
Idefics2VisionConfig)
from transformers.models.llama.configuration_llama import LlamaConfig
from vllm.logger import init_logger
logger = init_logger(__name__)
class AriaVisionConfig(Idefics2VisionConfig):
model_type = "aria_vision_model"
@ -45,3 +70,96 @@ class AriaMoELMConfig(LlamaConfig):
self.moe_num_experts = moe_num_experts
self.moe_topk = moe_topk
self.moe_num_shared_experts = moe_num_shared_experts
class AriaConfig(PretrainedConfig):
"""
Configuration class for Aria model.
This class handles the configuration for both vision and text components of
the Aria model,
as well as additional parameters for image token handling and projector
mapping.
Args:
vision_config (AriaVisionConfig or dict): Configuration for the vision
component.
text_config (AriaMoELMConfig or dict): Configuration for the text
component.
projector_patch_to_query_dict (dict): Mapping of patch sizes to query
dimensions.
ignore_index (int): Index to ignore in loss calculation.
image_token_index (int): Index used to represent image tokens.
**kwargs: Additional keyword arguments passed to the parent class.
Attributes:
model_type (str): Type of the model, set to "aria".
is_composition (bool): Whether the model is a composition of multiple
components.
ignore_index (int): Index to ignore in loss calculation.
image_token_index (int): Index used to represent image tokens.
projector_patch_to_query_dict (dict): Mapping of patch sizes to query
dimensions.
vision_config (AriaVisionConfig): Configuration for the vision
component.
text_config (AriaMoELMConfig): Configuration for the text component.
"""
model_type = "aria"
is_composition = False
def __init__(
self,
vision_config: AriaVisionConfig = AriaVisionConfig(), # noqa: B008
text_config: AriaMoELMConfig = AriaMoELMConfig(), # noqa: B008
projector_patch_to_query_dict: Mapping[int, int] = {
1225: 128,
4900: 256,
},
ignore_index=-100,
image_token_index=32000,
tie_word_embeddings=False,
**kwargs,
):
super().__init__(**kwargs)
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.tie_word_embeddings = tie_word_embeddings
attn_implementation = kwargs.pop("attn_implementation", None)
# Set the default attention implementation to flash_attention_2 if not
# specified
self._attn_implementation = ("flash_attention_2"
if attn_implementation is None else
attn_implementation)
# Convert the keys and values of projector_patch_to_query_dict to
# integers
# This ensures consistency even if they were provided as strings
self.projector_patch_to_query_dict = {
int(k): int(v)
for k, v in projector_patch_to_query_dict.items()
}
if isinstance(vision_config, dict) and "model_type" in vision_config:
vision_config = AriaVisionConfig(**vision_config)
if attn_implementation is None:
vision_attn_implementation = "flash_attention_2"
elif attn_implementation == "sdpa":
logger.warning("SDPA is not supported for vit, using "
"flash_attention_2 instead")
vision_attn_implementation = "flash_attention_2"
else:
vision_attn_implementation = attn_implementation
vision_config._attn_implementation = vision_attn_implementation
self.vision_config = vision_config
if isinstance(text_config, dict) and "model_type" in text_config:
text_attn_implementation = ("sdpa" if attn_implementation is None
else attn_implementation)
text_config = AriaMoELMConfig(**text_config)
text_config._attn_implementation = text_attn_implementation
self.text_config = text_config
# This is needed for the static kv cache
self.num_hidden_layers = self.text_config.num_hidden_layers