[V1] Refactor model executable interface for all text-only language models (#10374)

Signed-off-by: Roger Wang <ywang@roblox.com>
This commit is contained in:
Roger Wang 2024-11-16 21:18:46 -08:00 committed by GitHub
parent 4fd9375028
commit 643ecf7b11
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
43 changed files with 483 additions and 90 deletions

View File

@ -389,6 +389,9 @@ class ArcticModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -396,9 +399,13 @@ class ArcticModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
@ -439,6 +446,9 @@ class ArcticForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -446,9 +456,11 @@ class ArcticForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -284,6 +284,9 @@ class BaiChuanModel(nn.Module):
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -291,9 +294,13 @@ class BaiChuanModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
@ -363,6 +370,9 @@ class BaiChuanBaseForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -370,9 +380,11 @@ class BaiChuanBaseForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -251,6 +251,9 @@ class BloomModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.word_embeddings_layernorm(self.word_embeddings(input_ids))
def forward(
self,
input_ids: torch.Tensor,
@ -258,10 +261,13 @@ class BloomModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.word_embeddings(input_ids)
hidden_states = self.word_embeddings_layernorm(hidden_states)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
@ -301,6 +307,9 @@ class BloomForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.transformer.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -308,9 +317,11 @@ class BloomForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.transformer(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -280,6 +280,9 @@ class CohereModel(nn.Module):
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -287,9 +290,13 @@ class CohereModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
@ -354,6 +361,9 @@ class CohereForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
@torch.no_grad()
def forward(
self,
@ -362,9 +372,11 @@ class CohereForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -321,6 +321,9 @@ class DbrxModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.d_model))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.wte(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -328,9 +331,13 @@ class DbrxModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.wte(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
assert intermediate_tensors
hidden_states = intermediate_tensors["hidden_states"]
@ -376,6 +383,9 @@ class DbrxForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.transformer.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -383,9 +393,11 @@ class DbrxForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.transformer(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -353,6 +353,9 @@ class DeepseekModel(nn.Module):
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -360,9 +363,13 @@ class DeepseekModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
hidden_states = intermediate_tensors["hidden_states"]
@ -401,6 +408,9 @@ class DeepseekForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -408,9 +418,11 @@ class DeepseekForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -445,6 +445,9 @@ class DeepseekV2Model(nn.Module):
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -452,9 +455,13 @@ class DeepseekV2Model(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
@ -495,6 +502,9 @@ class DeepseekV2ForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -502,9 +512,11 @@ class DeepseekV2ForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -78,6 +78,9 @@ class EAGLE(nn.Module):
def sampler(self):
return self.model.sampler
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -86,11 +89,14 @@ class EAGLE(nn.Module):
attn_metadata: AttentionMetadata,
previous_hidden_states: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
tok_embeds = self.model.model.embed_tokens(input_ids)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings(input_ids)
inputs_embeds = self.fc(
torch.cat([tok_embeds, previous_hidden_states], dim=-1))
torch.cat([inputs_embeds, previous_hidden_states], dim=-1))
inputs_embeds[positions == 0] = 0 # masking inputs at position=0
@ -100,7 +106,8 @@ class EAGLE(nn.Module):
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
intermediate_tensors=intermediate_tensors)
intermediate_tensors=intermediate_tensors,
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,

View File

@ -479,6 +479,9 @@ class ExaoneForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -486,9 +489,11 @@ class ExaoneForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
model_output = self.transformer(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return model_output
def compute_logits(

View File

@ -367,6 +367,9 @@ class FalconModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.word_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -374,9 +377,13 @@ class FalconModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.word_embeddings(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
hidden_states = intermediate_tensors["hidden_states"]
for i in range(self.start_layer, self.end_layer):
@ -432,6 +439,9 @@ class FalconForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.transformer.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.LongTensor,
@ -439,9 +449,11 @@ class FalconForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -390,6 +390,9 @@ class GemmaForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -397,9 +400,11 @@ class GemmaForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -272,6 +272,9 @@ class Gemma2Model(nn.Module):
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: Optional[torch.Tensor],
@ -285,7 +288,7 @@ class Gemma2Model(nn.Module):
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embed_tokens(input_ids)
hidden_states = self.get_input_embeddings(input_ids)
hidden_states *= self.normalizer
residual = None
else:
@ -414,6 +417,9 @@ class Gemma2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -421,9 +427,11 @@ class Gemma2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -209,6 +209,9 @@ class GPT2Model(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.n_embd))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.wte(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -220,7 +223,7 @@ class GPT2Model(nn.Module):
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
inputs_embeds = self.get_input_embeddings(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
else:
@ -262,7 +265,7 @@ class GPT2LMHeadModel(nn.Module, SupportsPP):
self.transformer.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.transformer.wte(input_ids)
return self.transformer.get_input_embeddings(input_ids)
def forward(
self,

View File

@ -218,6 +218,9 @@ class GPTBigCodeModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.n_embd))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.wte(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -225,11 +228,12 @@ class GPTBigCodeModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings(input_ids)
hidden_states = inputs_embeds + self.wpe(position_ids)
else:
hidden_states = intermediate_tensors["hidden_states"]
@ -285,6 +289,9 @@ class GPTBigCodeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.transformer.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -292,9 +299,11 @@ class GPTBigCodeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.transformer(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -201,6 +201,9 @@ class GPTJModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.n_embd))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.wte(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -208,9 +211,13 @@ class GPTJModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.wte(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
hidden_states = intermediate_tensors["hidden_states"]
for i in range(self.start_layer, self.end_layer):
@ -250,6 +257,9 @@ class GPTJForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.transformer.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -257,9 +267,11 @@ class GPTJForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.transformer(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -214,6 +214,9 @@ class GPTNeoXModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_in(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -221,9 +224,13 @@ class GPTNeoXModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_in(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
hidden_states = intermediate_tensors["hidden_states"]
for i in range(self.start_layer, self.end_layer):
@ -262,6 +269,9 @@ class GPTNeoXForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.gpt_neox.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.gpt_neox.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -269,9 +279,11 @@ class GPTNeoXForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.gpt_neox(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -409,6 +409,9 @@ class GraniteForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
else:
self.lm_head = PPMissingLayer()
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -416,9 +419,11 @@ class GraniteForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
model_output = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return model_output
def compute_logits(

View File

@ -277,6 +277,9 @@ class GraniteMoeModel(nn.Module):
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -284,9 +287,13 @@ class GraniteMoeModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
hidden_states *= self.embedding_multiplier
residual = None
else:
@ -366,6 +373,9 @@ class GraniteMoeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.sampler = get_sampler()
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -373,9 +383,11 @@ class GraniteMoeForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -290,7 +290,7 @@ class InternLM2Model(nn.Module):
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.tok_embeddings(input_ids)
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
@ -335,6 +335,9 @@ class InternLM2ForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -342,9 +345,11 @@ class InternLM2ForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -250,6 +250,9 @@ class JAISModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.n_embd))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.wte(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -257,9 +260,11 @@ class JAISModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[IntermediateTensors, torch.Tensor]:
if get_pp_group().is_first_rank:
inputs_embeds = self.wte(input_ids)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings(input_ids)
if self.wpe is not None:
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
@ -311,6 +316,9 @@ class JAISLMHeadModel(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.transformer.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -318,9 +326,11 @@ class JAISLMHeadModel(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[IntermediateTensors, torch.Tensor]:
hidden_states = self.transformer(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -292,6 +292,9 @@ class JambaModel(nn.Module):
self.final_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -299,8 +302,12 @@ class JambaModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
mamba_cache_params: MambaCacheParams,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
@ -381,12 +388,16 @@ class JambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA):
config.vocab_size)
self.sampler = get_sampler()
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs):
if self.mamba_cache is None:
max_batch_size = (_get_graph_batch_size(
@ -409,7 +420,8 @@ class JambaForCausalLM(nn.Module, HasInnerState, SupportsLoRA):
mamba_cache_tensors[1],
state_indices_tensor)
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, mamba_cache_params)
attn_metadata, mamba_cache_params,
inputs_embeds)
return hidden_states
def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):

View File

@ -106,15 +106,22 @@ class MambaModel(nn.Module):
self.norm_f = RMSNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
attn_metadata: AttentionMetadata,
mamba_cache_params: MambaCacheParams,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.embeddings(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
for i in range(len(self.layers)):
@ -168,12 +175,16 @@ class MambaForCausalLM(nn.Module, HasInnerState, IsAttentionFree):
config.vocab_size)
self.sampler = get_sampler()
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.backbone.get_input_embeddings(input_ids)
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs):
if self.mamba_cache is None:
max_batch_size = (_get_graph_batch_size(
@ -194,7 +205,7 @@ class MambaForCausalLM(nn.Module, HasInnerState, IsAttentionFree):
state_indices_tensor)
hidden_states = self.backbone(input_ids, positions, attn_metadata,
mamba_cache_params)
mamba_cache_params, inputs_embeds)
return hidden_states

View File

@ -504,6 +504,9 @@ class MiniCPMForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.model = MiniCPMModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -511,9 +514,11 @@ class MiniCPMForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -281,6 +281,9 @@ class MixtralModel(nn.Module):
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -288,9 +291,13 @@ class MixtralModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
@ -363,6 +370,9 @@ class MixtralForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -370,9 +380,11 @@ class MixtralForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -318,6 +318,9 @@ class MixtralModel(nn.Module):
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -325,9 +328,13 @@ class MixtralModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
@ -368,6 +375,9 @@ class MixtralForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -375,9 +385,11 @@ class MixtralForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -237,6 +237,9 @@ class MPTModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.d_model))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.wte(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -244,9 +247,13 @@ class MPTModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.wte(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
@ -283,6 +290,9 @@ class MPTForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.transformer.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.transformer.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -290,9 +300,11 @@ class MPTForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.transformer(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -440,6 +440,9 @@ class NemotronForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -447,9 +450,11 @@ class NemotronForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
model_output = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return model_output
def compute_logits(

View File

@ -248,6 +248,9 @@ class OlmoModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -255,17 +258,16 @@ class OlmoModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
"""
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
"""
if get_pp_group().is_first_rank:
# Get embeddings of input.
# shape: (batch_size, seq_len, d_model)
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
hidden_states = inputs_embeds
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
@ -315,6 +317,9 @@ class OlmoForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -322,6 +327,7 @@ class OlmoForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(
input_ids=input_ids,
@ -329,6 +335,7 @@ class OlmoForCausalLM(nn.Module, SupportsPP):
kv_caches=kv_caches,
attn_metadata=attn_metadata,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
return hidden_states

View File

@ -269,6 +269,9 @@ class OlmoeModel(nn.Module):
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -276,9 +279,13 @@ class OlmoeModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
@ -326,6 +333,9 @@ class OlmoeForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -333,9 +343,11 @@ class OlmoeForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,

View File

@ -237,6 +237,9 @@ class OrionModel(nn.Module):
"hidden_states",
], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -244,9 +247,13 @@ class OrionModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
@ -286,6 +293,9 @@ class OrionForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -293,9 +303,11 @@ class OrionForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -235,6 +235,9 @@ class PersimmonModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -248,7 +251,7 @@ class PersimmonModel(nn.Module):
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embed_tokens(input_ids)
hidden_states = self.get_input_embeddings(input_ids)
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
@ -282,6 +285,9 @@ class PersimmonForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,

View File

@ -218,6 +218,9 @@ class PhiModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -225,9 +228,13 @@ class PhiModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
@ -303,6 +310,9 @@ class PhiForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -310,9 +320,11 @@ class PhiForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states

View File

@ -324,11 +324,8 @@ class Phi3SmallModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
@ -337,9 +334,13 @@ class Phi3SmallModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor],
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
if (self.mup_embedding_multiplier is not None
and self.mup_embedding_multiplier > 0.0):
hidden_states = hidden_states * self.mup_embedding_multiplier
@ -397,8 +398,8 @@ class Phi3SmallForCausalLM(nn.Module, SupportsPP):
else:
self.dummy_token_indices = None
def get_input_embeddings(self):
return self.model.embed_tokens
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@ -433,6 +434,7 @@ class Phi3SmallForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
output_hidden_states = self.model(
input_ids=input_ids,
@ -440,6 +442,7 @@ class Phi3SmallForCausalLM(nn.Module, SupportsPP):
kv_caches=kv_caches,
attn_metadata=attn_metadata,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
)
output_hidden_states = output_hidden_states
return output_hidden_states

View File

@ -465,6 +465,9 @@ class PhiMoEModel(nn.Module):
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -472,9 +475,13 @@ class PhiMoEModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
@ -560,6 +567,9 @@ class PhiMoEForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -567,9 +577,11 @@ class PhiMoEForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,

View File

@ -578,6 +578,9 @@ class QWenModel(nn.Module):
quant_config=quant_config) if hasattr(
config, "visual") else None
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.wte(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -586,6 +589,7 @@ class QWenModel(nn.Module):
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
pixel_values: Optional[QwenImageInputs],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
img_pos = None
# If pixel / visual embeddings are provided, this is a visual model
@ -606,6 +610,10 @@ class QWenModel(nn.Module):
)
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
hidden_states = self.wte(input_ids)
# Merge the image embeddings into the hidden states if actually have
# visual features and the corresponding image tokens
@ -915,6 +923,9 @@ class QWenBaseModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
)
return None
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.transformer.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -922,7 +933,8 @@ class QWenBaseModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
pixel_values: Optional[torch.Tensor] = None
pixel_values: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if intermediate_tensors is not None:
input_ids = None
@ -932,7 +944,7 @@ class QWenBaseModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
hidden_states = self.transformer(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors,
pixel_values)
pixel_values, inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -309,7 +309,7 @@ class Qwen2Model(nn.Module):
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embed_tokens(input_ids)
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None

View File

@ -72,6 +72,9 @@ class Qwen2ForSequenceClassification(nn.Module, SupportsLoRA, SupportsPP):
normalize=False,
softmax=True)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -79,9 +82,11 @@ class Qwen2ForSequenceClassification(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
logits, _ = self.score(hidden_states)
return logits

View File

@ -344,6 +344,9 @@ class Qwen2MoeModel(nn.Module):
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -351,9 +354,13 @@ class Qwen2MoeModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
@ -395,6 +402,9 @@ class Qwen2MoeForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -402,9 +412,11 @@ class Qwen2MoeForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -85,6 +85,9 @@ class Qwen2ForRewardModel(nn.Module, SupportsLoRA, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -92,9 +95,11 @@ class Qwen2ForRewardModel(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
logits, _ = self.score(hidden_states)
return logits

View File

@ -456,9 +456,11 @@ class SolarForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
model_output = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return model_output
def compute_logits(self, hidden_states: torch.Tensor,

View File

@ -218,6 +218,9 @@ class StableLMEpochModel(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -225,9 +228,13 @@ class StableLMEpochModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
@ -265,6 +272,9 @@ class StablelmForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -272,9 +282,11 @@ class StablelmForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -221,6 +221,9 @@ class Starcoder2Model(nn.Module):
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -228,9 +231,13 @@ class Starcoder2Model(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
@ -273,6 +280,9 @@ class Starcoder2ForCausalLM(nn.Module, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -280,9 +290,11 @@ class Starcoder2ForCausalLM(nn.Module, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(

View File

@ -252,6 +252,9 @@ class XverseModel(nn.Module):
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -259,9 +262,13 @@ class XverseModel(nn.Module):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
hidden_states = self.embed_tokens(input_ids)
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
hidden_states = intermediate_tensors["hidden_states"]
@ -335,6 +342,9 @@ class XverseForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
@ -342,9 +352,11 @@ class XverseForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(