[Frontend] Add OpenAI API support for input_audio (#11027)

Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
kYLe 2024-12-17 00:09:58 -06:00 committed by GitHub
parent 0064f697d3
commit 66d4b16724
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 301 additions and 23 deletions

View File

@ -34,11 +34,6 @@ We currently support the following OpenAI APIs:
- *Note: `suffix` parameter is not supported.*
- [Chat Completions API](#chat-api) (`/v1/chat/completions`)
- Only applicable to [text generation models](../models/generative_models.rst) (`--task generate`) with a [chat template](#chat-template).
- [Vision](https://platform.openai.com/docs/guides/vision)-related parameters are supported; see [Multimodal Inputs](../usage/multimodal_inputs.rst).
- *Note: `image_url.detail` parameter is not supported.*
- We also support `audio_url` content type for audio files.
- Refer to [vllm.entrypoints.chat_utils](https://github.com/vllm-project/vllm/tree/main/vllm/entrypoints/chat_utils.py) for the exact schema.
- *TODO: Support `input_audio` content type as defined [here](https://github.com/openai/openai-python/blob/v1.52.2/src/openai/types/chat/chat_completion_content_part_input_audio_param.py).*
- *Note: `parallel_tool_calls` and `user` parameters are ignored.*
- [Embeddings API](#embeddings-api) (`/v1/embeddings`)
- Only applicable to [embedding models](../models/pooling_models.rst) (`--task embed`).
@ -209,6 +204,11 @@ The following extra parameters are supported:
Refer to [OpenAI's API reference](https://platform.openai.com/docs/api-reference/chat) for more details.
We support both [Vision](https://platform.openai.com/docs/guides/vision)- and
[Audio](https://platform.openai.com/docs/guides/audio?audio-generation-quickstart-example=audio-in)-related parameters;
see our [Multimodal Inputs](../usage/multimodal_inputs.rst) guide for more information.
- *Note: `image_url.detail` parameter is not supported.*
#### Extra parameters
The following [sampling parameters (click through to see documentation)](../dev/sampling_params.rst) are supported.

View File

@ -315,7 +315,95 @@ You can use `these tests <https://github.com/vllm-project/vllm/blob/main/tests/e
Audio
^^^^^
Instead of :code:`image_url`, you can pass an audio file via :code:`audio_url`.
Audio input is supported according to `OpenAI Audio API <https://platform.openai.com/docs/guides/audio?audio-generation-quickstart-example=audio-in>`_.
Here is a simple example using Ultravox-v0.3.
First, launch the OpenAI-compatible server:
.. code-block:: bash
vllm serve fixie-ai/ultravox-v0_3
Then, you can use the OpenAI client as follows:
.. code-block:: python
import base64
import requests
from openai import OpenAI
from vllm.assets.audio import AudioAsset
def encode_base64_content_from_url(content_url: str) -> str:
"""Encode a content retrieved from a remote url to base64 format."""
with requests.get(content_url) as response:
response.raise_for_status()
result = base64.b64encode(response.content).decode('utf-8')
return result
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
# Any format supported by librosa is supported
audio_url = AudioAsset("winning_call").url
audio_base64 = encode_base64_content_from_url(audio_url)
chat_completion_from_base64 = client.chat.completions.create(
messages=[{
"role": "user",
"content": [
{
"type": "text",
"text": "What's in this audio?"
},
{
"type": "input_audio",
"input_audio": {
"data": audio_base64,
"format": "wav"
},
},
],
}],
model=model,
max_completion_tokens=64,
)
result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from input audio:", result)
Alternatively, you can pass :code:`audio_url`, which is the audio counterpart of :code:`image_url` for image input:
.. code-block:: python
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role": "user",
"content": [
{
"type": "text",
"text": "What's in this audio?"
},
{
"type": "audio_url",
"audio_url": {
"url": audio_url
},
},
],
}],
model=model,
max_completion_tokens=64,
)
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from audio url:", result)
A full code example can be found in `examples/openai_chat_completion_client_for_multimodal.py <https://github.com/vllm-project/vllm/blob/main/examples/openai_chat_completion_client_for_multimodal.py>`_.

View File

@ -153,10 +153,37 @@ def run_multi_image() -> None:
# Audio input inference
def run_audio() -> None:
# Any format supported by librosa is supported
audio_url = AudioAsset("winning_call").url
audio_base64 = encode_base64_content_from_url(audio_url)
# Use audio url in the payload
# OpenAI-compatible schema (`input_audio`)
chat_completion_from_base64 = client.chat.completions.create(
messages=[{
"role":
"user",
"content": [
{
"type": "text",
"text": "What's in this audio?"
},
{
"type": "input_audio",
"input_audio": {
# Any format supported by librosa is supported
"data": audio_base64,
"format": "wav"
},
},
],
}],
model=model,
max_completion_tokens=64,
)
result = chat_completion_from_base64.choices[0].message.content
print("Chat completion output from input audio:", result)
# HTTP URL
chat_completion_from_url = client.chat.completions.create(
messages=[{
"role":
@ -169,6 +196,7 @@ def run_audio() -> None:
{
"type": "audio_url",
"audio_url": {
# Any format supported by librosa is supported
"url": audio_url
},
},
@ -181,7 +209,7 @@ def run_audio() -> None:
result = chat_completion_from_url.choices[0].message.content
print("Chat completion output from audio url:", result)
audio_base64 = encode_base64_content_from_url(audio_url)
# base64 URL
chat_completion_from_base64 = client.chat.completions.create(
messages=[{
"role":

View File

@ -155,6 +155,61 @@ async def test_single_chat_session_audio_base64encoded(
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("audio_url", TEST_AUDIO_URLS)
async def test_single_chat_session_input_audio(
client: openai.AsyncOpenAI, model_name: str, audio_url: str,
base64_encoded_audio: Dict[str, str]):
messages = [{
"role":
"user",
"content": [
{
"type": "input_audio",
"input_audio": {
"data": base64_encoded_audio[audio_url],
"format": "wav"
}
},
{
"type": "text",
"text": "What's happening in this audio?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
logprobs=True,
top_logprobs=5)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"
assert chat_completion.usage == openai.types.CompletionUsage(
completion_tokens=10, prompt_tokens=202, total_tokens=212)
message = choice.message
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 10
assert message.role == "assistant"
messages.append({"role": "assistant", "content": message.content})
# test multi-turn dialogue
messages.append({"role": "user", "content": "express your result in json"})
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
)
message = chat_completion.choices[0].message
assert message.content is not None and len(message.content) >= 0
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("audio_url", TEST_AUDIO_URLS)
@ -212,11 +267,72 @@ async def test_chat_streaming_audio(client: openai.AsyncOpenAI,
assert "".join(chunks) == output
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("audio_url", TEST_AUDIO_URLS)
async def test_chat_streaming_input_audio(client: openai.AsyncOpenAI,
model_name: str, audio_url: str,
base64_encoded_audio: Dict[str,
str]):
messages = [{
"role":
"user",
"content": [
{
"type": "input_audio",
"input_audio": {
"data": base64_encoded_audio[audio_url],
"format": "wav"
}
},
{
"type": "text",
"text": "What's happening in this audio?"
},
],
}]
# test single completion
chat_completion = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
)
output = chat_completion.choices[0].message.content
stop_reason = chat_completion.choices[0].finish_reason
# test streaming
stream = await client.chat.completions.create(
model=model_name,
messages=messages,
max_completion_tokens=10,
temperature=0.0,
stream=True,
)
chunks: List[str] = []
finish_reason_count = 0
async for chunk in stream:
delta = chunk.choices[0].delta
if delta.role:
assert delta.role == "assistant"
if delta.content:
chunks.append(delta.content)
if chunk.choices[0].finish_reason is not None:
finish_reason_count += 1
# finish reason should only return in last block
assert finish_reason_count == 1
assert chunk.choices[0].finish_reason == stop_reason
assert delta.content
assert "".join(chunks) == output
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("audio_url", TEST_AUDIO_URLS)
async def test_multi_audio_input(client: openai.AsyncOpenAI, model_name: str,
audio_url: str):
audio_url: str,
base64_encoded_audio: Dict[str, str]):
messages = [{
"role":
@ -229,9 +345,10 @@ async def test_multi_audio_input(client: openai.AsyncOpenAI, model_name: str,
}
},
{
"type": "audio_url",
"audio_url": {
"url": audio_url
"type": "input_audio",
"input_audio": {
"data": base64_encoded_audio[audio_url],
"format": "wav"
}
},
{

View File

@ -13,7 +13,8 @@ import transformers.utils.chat_template_utils as hf_chat_utils
# yapf conflicts with isort for this block
# yapf: disable
from openai.types.chat import (ChatCompletionAssistantMessageParam,
ChatCompletionContentPartImageParam)
ChatCompletionContentPartImageParam,
ChatCompletionContentPartInputAudioParam)
from openai.types.chat import (
ChatCompletionContentPartParam as OpenAIChatCompletionContentPartParam)
from openai.types.chat import (ChatCompletionContentPartRefusalParam,
@ -105,6 +106,7 @@ class CustomChatCompletionContentSimpleVideoParam(TypedDict, total=False):
ChatCompletionContentPartParam: TypeAlias = Union[
OpenAIChatCompletionContentPartParam, ChatCompletionContentPartAudioParam,
ChatCompletionContentPartInputAudioParam,
ChatCompletionContentPartVideoParam, ChatCompletionContentPartRefusalParam,
CustomChatCompletionContentSimpleImageParam,
CustomChatCompletionContentSimpleAudioParam,
@ -519,6 +521,10 @@ class BaseMultiModalContentParser(ABC):
def parse_audio(self, audio_url: str) -> None:
raise NotImplementedError
@abstractmethod
def parse_input_audio(self, input_audio: Dict[str, str]) -> None:
raise NotImplementedError
@abstractmethod
def parse_video(self, video_url: str) -> None:
raise NotImplementedError
@ -545,6 +551,15 @@ class MultiModalContentParser(BaseMultiModalContentParser):
placeholder = self._tracker.add("audio", audio)
self._add_placeholder(placeholder)
def parse_input_audio(self, input_audio: Dict[str, str]) -> None:
input_audio_data = input_audio.get("data","")
input_audio_format = input_audio.get("format","")
audio_url = f"data:audio/{input_audio_format};base64,{input_audio_data}"
audio = get_and_parse_audio(audio_url)
placeholder = self._tracker.add("audio", audio)
self._add_placeholder(placeholder)
def parse_video(self, video_url: str) -> None:
video = get_and_parse_video(video_url)
@ -574,6 +589,15 @@ class AsyncMultiModalContentParser(BaseMultiModalContentParser):
placeholder = self._tracker.add("audio", audio_coro)
self._add_placeholder(placeholder)
def parse_input_audio(self, input_audio: Dict[str, str]) -> None:
input_audio_data = input_audio.get("data","")
input_audio_format = input_audio.get("format","")
audio_url = f"data:audio/{input_audio_format};base64,{input_audio_data}"
audio_coro = async_get_and_parse_audio(audio_url)
placeholder = self._tracker.add("audio", audio_coro)
self._add_placeholder(placeholder)
def parse_video(self, video_url: str) -> None:
video = async_get_and_parse_video(video_url)
@ -667,17 +691,22 @@ def _get_full_multimodal_text_prompt(placeholder_counts: Dict[str, int],
_TextParser = partial(cast, ChatCompletionContentPartTextParam)
_ImageParser = partial(cast, ChatCompletionContentPartImageParam)
_AudioParser = partial(cast, ChatCompletionContentPartAudioParam)
_InputAudioParser = partial(cast, ChatCompletionContentPartInputAudioParam)
_RefusalParser = partial(cast, ChatCompletionContentPartRefusalParam)
_VideoParser = partial(cast, ChatCompletionContentPartVideoParam)
# Define a mapping from part types to their corresponding parsing functions.
MM_PARSER_MAP: Dict[str, Callable[[ChatCompletionContentPartParam], str]] = {
MM_PARSER_MAP: Dict[str,
Callable[[ChatCompletionContentPartParam],
Union[str, Dict[str,str]]]] = {
"text":
lambda part: _TextParser(part).get("text", ""),
"image_url":
lambda part: _ImageParser(part).get("image_url", {}).get("url", ""),
"audio_url":
lambda part: _AudioParser(part).get("audio_url", {}).get("url", ""),
"input_audio":
lambda part: _InputAudioParser(part).get("input_audio", {}),
"refusal":
lambda part: _RefusalParser(part).get("refusal", ""),
"video_url":
@ -686,7 +715,8 @@ MM_PARSER_MAP: Dict[str, Callable[[ChatCompletionContentPartParam], str]] = {
def _parse_chat_message_content_mm_part(
part: ChatCompletionContentPartParam) -> Tuple[str, str]:
part: ChatCompletionContentPartParam) -> Tuple[str,
Union[str, Dict[str, str]]]:
"""
Parses a given multi-modal content part based on its type.
@ -717,6 +747,7 @@ def _parse_chat_message_content_mm_part(
return part_type, content
# Handle missing 'type' but provided direct URL fields.
# 'type' is required field by pydantic
if part_type is None:
if part.get("image_url") is not None:
image_params = cast(CustomChatCompletionContentSimpleImageParam,
@ -726,6 +757,9 @@ def _parse_chat_message_content_mm_part(
audio_params = cast(CustomChatCompletionContentSimpleAudioParam,
part)
return "audio_url", audio_params.get("audio_url", "")
if part.get("input_audio") is not None:
input_audio_params = cast(Dict[str, str], part)
return "input_audio", input_audio_params
if part.get("video_url") is not None:
video_params = cast(CustomChatCompletionContentSimpleVideoParam,
part)
@ -739,7 +773,7 @@ def _parse_chat_message_content_mm_part(
VALID_MESSAGE_CONTENT_MM_PART_TYPES = ("text", "refusal", "image_url",
"audio_url", "video_url")
"audio_url", "input_audio", "video_url")
def _parse_chat_message_content_parts(
@ -795,7 +829,7 @@ def _parse_chat_message_content_part(
# Handle structured dictionary parts
part_type, content = _parse_chat_message_content_mm_part(part)
# if part_type is text/refusal/image_url/audio_url/video_url but
# if part_type is text/refusal/image_url/audio_url/video_url/input_audio but
# content is empty, log a warning and skip
if part_type in VALID_MESSAGE_CONTENT_MM_PART_TYPES and not content:
logger.warning(
@ -804,18 +838,30 @@ def _parse_chat_message_content_part(
return None
if part_type in ("text", "refusal"):
return {'type': 'text', 'text': content} if wrap_dicts else content
str_content = cast(str, content)
if wrap_dicts:
return {'type': 'text', 'text': str_content}
else:
return str_content
if part_type == "image_url":
mm_parser.parse_image(content)
str_content = cast(str, content)
mm_parser.parse_image(str_content)
return {'type': 'image'} if wrap_dicts else None
if part_type == "audio_url":
mm_parser.parse_audio(content)
str_content = cast(str, content)
mm_parser.parse_audio(str_content)
return {'type': 'audio'} if wrap_dicts else None
if part_type == "input_audio":
dict_content = cast(Dict[str, str], content)
mm_parser.parse_input_audio(dict_content)
return {'type': 'audio'} if wrap_dicts else None
if part_type == "video_url":
mm_parser.parse_video(content)
str_content = cast(str, content)
mm_parser.parse_video(str_content)
return {'type': 'video'} if wrap_dicts else None
raise NotImplementedError(f"Unknown part type: {part_type}")
@ -840,7 +886,6 @@ def _parse_chat_message_content(
content = [
ChatCompletionContentPartTextParam(type="text", text=content)
]
result = _parse_chat_message_content_parts(
role,
content, # type: ignore