mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:44:57 +08:00
[Frontend] Gracefully handle missing chat template and fix CI failure (#7238)
Co-authored-by: Roger Wang <ywang@roblox.com>
This commit is contained in:
parent
7b261092de
commit
66d617e343
@ -1,22 +1,16 @@
|
||||
import os
|
||||
import pathlib
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm.entrypoints.chat_utils import load_chat_template
|
||||
from vllm.entrypoints.chat_utils import apply_chat_template, load_chat_template
|
||||
from vllm.entrypoints.openai.protocol import ChatCompletionRequest
|
||||
from vllm.transformers_utils.tokenizer import get_tokenizer
|
||||
|
||||
chatml_jinja_path = pathlib.Path(os.path.dirname(os.path.abspath(
|
||||
__file__))).parent.parent / "examples/template_chatml.jinja"
|
||||
from ..utils import VLLM_PATH
|
||||
|
||||
chatml_jinja_path = VLLM_PATH / "examples/template_chatml.jinja"
|
||||
assert chatml_jinja_path.exists()
|
||||
|
||||
# Define models, templates, and their corresponding expected outputs
|
||||
MODEL_TEMPLATE_GENERATON_OUTPUT = [
|
||||
("facebook/opt-125m", None, True,
|
||||
"Hello</s>Hi there!</s>What is the capital of</s>"),
|
||||
("facebook/opt-125m", None, False,
|
||||
"Hello</s>Hi there!</s>What is the capital of</s>"),
|
||||
("facebook/opt-125m", chatml_jinja_path, True, """<|im_start|>user
|
||||
Hello<|im_end|>
|
||||
<|im_start|>assistant
|
||||
@ -93,11 +87,12 @@ def test_get_gen_prompt(model, template, add_generation_prompt,
|
||||
add_generation_prompt=add_generation_prompt)
|
||||
|
||||
# Call the function and get the result
|
||||
result = tokenizer.apply_chat_template(
|
||||
result = apply_chat_template(
|
||||
tokenizer,
|
||||
conversation=mock_request.messages,
|
||||
tokenize=False,
|
||||
chat_template=mock_request.chat_template or template_content,
|
||||
add_generation_prompt=mock_request.add_generation_prompt,
|
||||
chat_template=mock_request.chat_template or template_content)
|
||||
)
|
||||
|
||||
# Test assertion
|
||||
assert result == expected_output, (
|
||||
|
||||
@ -1,10 +1,12 @@
|
||||
import openai # use the official client for correctness check
|
||||
import pytest
|
||||
|
||||
from ..utils import RemoteOpenAIServer
|
||||
from ..utils import VLLM_PATH, RemoteOpenAIServer
|
||||
|
||||
# any model with a chat template should work here
|
||||
MODEL_NAME = "facebook/opt-125m"
|
||||
chatml_jinja_path = VLLM_PATH / "examples/template_chatml.jinja"
|
||||
assert chatml_jinja_path.exists()
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
@ -16,7 +18,9 @@ def server():
|
||||
"--max-model-len",
|
||||
"2048",
|
||||
"--enforce-eager",
|
||||
"--engine-use-ray"
|
||||
"--engine-use-ray",
|
||||
"--chat-template",
|
||||
str(chatml_jinja_path),
|
||||
]
|
||||
|
||||
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
|
||||
@ -83,7 +87,7 @@ async def test_single_chat_session(client: openai.AsyncOpenAI):
|
||||
choice = chat_completion.choices[0]
|
||||
assert choice.finish_reason == "length"
|
||||
assert chat_completion.usage == openai.types.CompletionUsage(
|
||||
completion_tokens=10, prompt_tokens=13, total_tokens=23)
|
||||
completion_tokens=10, prompt_tokens=55, total_tokens=65)
|
||||
|
||||
message = choice.message
|
||||
assert message.content is not None and len(message.content) >= 10
|
||||
|
||||
@ -9,6 +9,11 @@ from vllm.model_executor.models.opt import OPTForCausalLM
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.utils import get_open_port
|
||||
|
||||
from ...utils import VLLM_PATH, RemoteOpenAIServer
|
||||
|
||||
chatml_jinja_path = VLLM_PATH / "examples/template_chatml.jinja"
|
||||
assert chatml_jinja_path.exists()
|
||||
|
||||
|
||||
class MyOPTForCausalLM(OPTForCausalLM):
|
||||
|
||||
@ -21,12 +26,25 @@ class MyOPTForCausalLM(OPTForCausalLM):
|
||||
return logits
|
||||
|
||||
|
||||
def server_function(port):
|
||||
def server_function(port: int):
|
||||
# register our dummy model
|
||||
ModelRegistry.register_model("OPTForCausalLM", MyOPTForCausalLM)
|
||||
sys.argv = ["placeholder.py"] + \
|
||||
("--model facebook/opt-125m --gpu-memory-utilization 0.10 "
|
||||
f"--dtype float32 --api-key token-abc123 --port {port}").split()
|
||||
|
||||
sys.argv = ["placeholder.py"] + [
|
||||
"--model",
|
||||
"facebook/opt-125m",
|
||||
"--gpu-memory-utilization",
|
||||
"0.10",
|
||||
"--dtype",
|
||||
"float32",
|
||||
"--api-key",
|
||||
"token-abc123",
|
||||
"--port",
|
||||
str(port),
|
||||
"--chat-template",
|
||||
str(chatml_jinja_path),
|
||||
]
|
||||
|
||||
import runpy
|
||||
runpy.run_module('vllm.entrypoints.openai.api_server', run_name='__main__')
|
||||
|
||||
@ -36,35 +54,40 @@ def test_oot_registration_for_api_server():
|
||||
ctx = torch.multiprocessing.get_context()
|
||||
server = ctx.Process(target=server_function, args=(port, ))
|
||||
server.start()
|
||||
MAX_SERVER_START_WAIT_S = 60
|
||||
client = OpenAI(
|
||||
base_url=f"http://localhost:{port}/v1",
|
||||
api_key="token-abc123",
|
||||
)
|
||||
now = time.time()
|
||||
while True:
|
||||
try:
|
||||
completion = client.chat.completions.create(
|
||||
model="facebook/opt-125m",
|
||||
messages=[{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
}, {
|
||||
"role": "user",
|
||||
"content": "Hello!"
|
||||
}],
|
||||
temperature=0,
|
||||
)
|
||||
break
|
||||
except OpenAIError as e:
|
||||
if "Connection error" in str(e):
|
||||
time.sleep(3)
|
||||
if time.time() - now > MAX_SERVER_START_WAIT_S:
|
||||
raise RuntimeError("Server did not start in time") from e
|
||||
else:
|
||||
raise e
|
||||
server.kill()
|
||||
|
||||
try:
|
||||
client = OpenAI(
|
||||
base_url=f"http://localhost:{port}/v1",
|
||||
api_key="token-abc123",
|
||||
)
|
||||
now = time.time()
|
||||
while True:
|
||||
try:
|
||||
completion = client.chat.completions.create(
|
||||
model="facebook/opt-125m",
|
||||
messages=[{
|
||||
"role": "system",
|
||||
"content": "You are a helpful assistant."
|
||||
}, {
|
||||
"role": "user",
|
||||
"content": "Hello!"
|
||||
}],
|
||||
temperature=0,
|
||||
)
|
||||
break
|
||||
except OpenAIError as e:
|
||||
if "Connection error" in str(e):
|
||||
time.sleep(3)
|
||||
if time.time() - now > RemoteOpenAIServer.MAX_START_WAIT_S:
|
||||
msg = "Server did not start in time"
|
||||
raise RuntimeError(msg) from e
|
||||
else:
|
||||
raise e
|
||||
finally:
|
||||
server.terminate()
|
||||
|
||||
generated_text = completion.choices[0].message.content
|
||||
assert generated_text is not None
|
||||
# make sure only the first token is generated
|
||||
rest = generated_text.replace("<s>", "")
|
||||
assert rest == ""
|
||||
|
||||
@ -50,7 +50,7 @@ VLLM_PATH = Path(__file__).parent.parent
|
||||
|
||||
class RemoteOpenAIServer:
|
||||
DUMMY_API_KEY = "token-abc123" # vLLM's OpenAI server does not need API key
|
||||
MAX_SERVER_START_WAIT_S = 120 # wait for server to start for 120 seconds
|
||||
MAX_START_WAIT_S = 120 # wait for server to start for 120 seconds
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -85,7 +85,7 @@ class RemoteOpenAIServer:
|
||||
stdout=sys.stdout,
|
||||
stderr=sys.stderr)
|
||||
self._wait_for_server(url=self.url_for("health"),
|
||||
timeout=self.MAX_SERVER_START_WAIT_S)
|
||||
timeout=self.MAX_START_WAIT_S)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
@ -1,8 +1,9 @@
|
||||
import codecs
|
||||
from dataclasses import dataclass
|
||||
from functools import lru_cache
|
||||
from typing import (Awaitable, Iterable, List, Optional, Tuple, Union, cast,
|
||||
final)
|
||||
from pathlib import Path
|
||||
from typing import (Any, Awaitable, Iterable, List, Optional, Tuple, Union,
|
||||
cast, final)
|
||||
|
||||
# yapf conflicts with isort for this block
|
||||
# yapf: disable
|
||||
@ -22,6 +23,7 @@ from vllm.config import ModelConfig
|
||||
from vllm.logger import init_logger
|
||||
from vllm.multimodal import MultiModalDataDict
|
||||
from vllm.multimodal.utils import async_get_and_parse_image
|
||||
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
@ -69,13 +71,17 @@ class ChatMessageParseResult:
|
||||
mm_futures: List[Awaitable[MultiModalDataDict]]
|
||||
|
||||
|
||||
def load_chat_template(chat_template: Optional[str]) -> Optional[str]:
|
||||
def load_chat_template(
|
||||
chat_template: Optional[Union[Path, str]]) -> Optional[str]:
|
||||
if chat_template is None:
|
||||
return None
|
||||
try:
|
||||
with open(chat_template, "r") as f:
|
||||
resolved_chat_template = f.read()
|
||||
except OSError as e:
|
||||
if isinstance(chat_template, Path):
|
||||
raise
|
||||
|
||||
JINJA_CHARS = "{}\n"
|
||||
if not any(c in chat_template for c in JINJA_CHARS):
|
||||
msg = (f"The supplied chat template ({chat_template}) "
|
||||
@ -208,3 +214,28 @@ def parse_chat_messages(
|
||||
mm_futures.extend(parse_result.mm_futures)
|
||||
|
||||
return conversation, mm_futures
|
||||
|
||||
|
||||
def apply_chat_template(
|
||||
tokenizer: AnyTokenizer,
|
||||
conversation: List[ConversationMessage],
|
||||
chat_template: Optional[str],
|
||||
*,
|
||||
tokenize: bool = False, # Different from HF's default
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
if chat_template is None and tokenizer.chat_template is None:
|
||||
raise ValueError(
|
||||
"As of transformers v4.44, default chat template is no longer "
|
||||
"allowed, so you must provide a chat template if the tokenizer "
|
||||
"does not define one.")
|
||||
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
conversation=conversation,
|
||||
chat_template=chat_template,
|
||||
tokenize=tokenize,
|
||||
**kwargs,
|
||||
)
|
||||
assert isinstance(prompt, str)
|
||||
|
||||
return prompt
|
||||
|
||||
@ -190,8 +190,9 @@ class ChatCompletionRequest(OpenAIBaseModel):
|
||||
default=None,
|
||||
description=(
|
||||
"A Jinja template to use for this conversion. "
|
||||
"If this is not passed, the model's default chat template will be "
|
||||
"used instead."),
|
||||
"As of transformers v4.44, default chat template is no longer "
|
||||
"allowed, so you must provide a chat template if the tokenizer "
|
||||
"does not define one."),
|
||||
)
|
||||
chat_template_kwargs: Optional[Dict[str, Any]] = Field(
|
||||
default=None,
|
||||
|
||||
@ -10,6 +10,7 @@ from transformers import PreTrainedTokenizer
|
||||
from vllm.config import ModelConfig
|
||||
from vllm.engine.protocol import AsyncEngineClient
|
||||
from vllm.entrypoints.chat_utils import (ConversationMessage,
|
||||
apply_chat_template,
|
||||
load_chat_template,
|
||||
parse_chat_messages)
|
||||
from vllm.entrypoints.logger import RequestLogger
|
||||
@ -99,16 +100,15 @@ class OpenAIServingChat(OpenAIServing):
|
||||
tool.model_dump() for tool in request.tools
|
||||
]
|
||||
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
prompt = apply_chat_template(
|
||||
tokenizer,
|
||||
conversation=conversation,
|
||||
tokenize=False,
|
||||
chat_template=request.chat_template or self.chat_template,
|
||||
add_generation_prompt=request.add_generation_prompt,
|
||||
tools=tool_dicts,
|
||||
documents=request.documents,
|
||||
chat_template=request.chat_template or self.chat_template,
|
||||
**(request.chat_template_kwargs or {}),
|
||||
)
|
||||
assert isinstance(prompt, str)
|
||||
except Exception as e:
|
||||
logger.error("Error in applying chat template from request: %s", e)
|
||||
return self.create_error_response(str(e))
|
||||
|
||||
@ -2,7 +2,9 @@ from typing import List, Optional, Union
|
||||
|
||||
from vllm.config import ModelConfig
|
||||
from vllm.engine.protocol import AsyncEngineClient
|
||||
from vllm.entrypoints.chat_utils import load_chat_template, parse_chat_messages
|
||||
from vllm.entrypoints.chat_utils import (apply_chat_template,
|
||||
load_chat_template,
|
||||
parse_chat_messages)
|
||||
from vllm.entrypoints.logger import RequestLogger
|
||||
# yapf conflicts with isort for this block
|
||||
# yapf: disable
|
||||
@ -70,12 +72,12 @@ class OpenAIServingTokenization(OpenAIServing):
|
||||
logger.warning(
|
||||
"Multi-modal inputs are ignored during tokenization")
|
||||
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
add_generation_prompt=request.add_generation_prompt,
|
||||
prompt = apply_chat_template(
|
||||
tokenizer,
|
||||
conversation=conversation,
|
||||
tokenize=False,
|
||||
chat_template=self.chat_template)
|
||||
assert isinstance(prompt, str)
|
||||
chat_template=self.chat_template,
|
||||
add_generation_prompt=request.add_generation_prompt,
|
||||
)
|
||||
else:
|
||||
prompt = request.prompt
|
||||
|
||||
|
||||
@ -12,12 +12,12 @@ from vllm.lora.request import LoRARequest
|
||||
from vllm.transformers_utils.tokenizers import BaichuanTokenizer
|
||||
from vllm.utils import make_async
|
||||
|
||||
from .tokenizer_group import AnyTokenizer
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
|
||||
def get_cached_tokenizer(
|
||||
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
||||
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
|
||||
def get_cached_tokenizer(tokenizer: AnyTokenizer) -> AnyTokenizer:
|
||||
"""Get tokenizer with cached properties.
|
||||
|
||||
This will patch the tokenizer object in place.
|
||||
@ -63,7 +63,7 @@ def get_tokenizer(
|
||||
revision: Optional[str] = None,
|
||||
download_dir: Optional[str] = None,
|
||||
**kwargs,
|
||||
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
|
||||
) -> AnyTokenizer:
|
||||
"""Gets a tokenizer for the given model name via HuggingFace or ModelScope.
|
||||
"""
|
||||
if VLLM_USE_MODELSCOPE:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user