[Frontend] Using matryoshka_dimensions control the allowed output dimensions. (#16970)

This commit is contained in:
wang.yuqi 2025-04-24 22:06:28 +08:00 committed by GitHub
parent b724afe343
commit 67309a1cb5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 172 additions and 76 deletions

View File

@ -159,14 +159,14 @@ For example, setting `dimensions` parameter while using the `BAAI/bge-m3` model
### Manually enable Matryoshka Embeddings
There is currently no official interface for specifying support for Matryoshka Embeddings. In vLLM, we simply check the existence of the fields `is_matryoshka` or `matryoshka_dimensions` inside `config.json`.
There is currently no official interface for specifying support for Matryoshka Embeddings. In vLLM, if `is_matryoshka` is `True` in `config.json,` it is allowed to change the output to arbitrary dimensions. Using `matryoshka_dimensions` can control the allowed output dimensions.
For models that support Matryoshka Embeddings but not recognized by vLLM, please manually override the config using `hf_overrides={"is_matryoshka": True}` (offline) or `--hf_overrides '{"is_matryoshka": true}'` (online).
For models that support Matryoshka Embeddings but not recognized by vLLM, please manually override the config using `hf_overrides={"is_matryoshka": True}`, `hf_overrides={"matryoshka_dimensions": [<allowed output dimensions>]}` (offline) or `--hf_overrides '{"is_matryoshka": true}'`, `--hf_overrides '{"matryoshka_dimensions": [<allowed output dimensions>]}'`(online).
Here is an example to serve a model with Matryoshka Embeddings enabled.
```text
vllm serve Snowflake/snowflake-arctic-embed-m-v1.5 --hf_overrides '{"is_matryoshka":true}'
vllm serve Snowflake/snowflake-arctic-embed-m-v1.5 --hf_overrides '{"matryoshka_dimensions":[256]}'
```
### Offline Inference
@ -204,14 +204,14 @@ curl http://127.0.0.1:8000/v1/embeddings \
"input": "Follow the white rabbit.",
"model": "jinaai/jina-embeddings-v3",
"encoding_format": "float",
"dimensions": 1
"dimensions": 32
}'
```
Expected output:
```json
{"id":"embd-0aab28c384d348c3b8f0eb783109dc5f","object":"list","created":1744195454,"model":"jinaai/jina-embeddings-v3","data":[{"index":0,"object":"embedding","embedding":[-1.0]}],"usage":{"prompt_tokens":10,"total_tokens":10,"completion_tokens":0,"prompt_tokens_details":null}}
{"id":"embd-5c21fc9a5c9d4384a1b021daccaf9f64","object":"list","created":1745476417,"model":"jinaai/jina-embeddings-v3","data":[{"index":0,"object":"embedding","embedding":[-0.3828125,-0.1357421875,0.03759765625,0.125,0.21875,0.09521484375,-0.003662109375,0.1591796875,-0.130859375,-0.0869140625,-0.1982421875,0.1689453125,-0.220703125,0.1728515625,-0.2275390625,-0.0712890625,-0.162109375,-0.283203125,-0.055419921875,-0.0693359375,0.031982421875,-0.04052734375,-0.2734375,0.1826171875,-0.091796875,0.220703125,0.37890625,-0.0888671875,-0.12890625,-0.021484375,-0.0091552734375,0.23046875]}],"usage":{"prompt_tokens":8,"total_tokens":8,"completion_tokens":0,"prompt_tokens_details":null}}
```
A openai client example can be found here: <gh-file:examples/online_serving/openai_embedding_matryoshka_fy.py>

View File

@ -25,11 +25,11 @@ def main():
responses = client.embeddings.create(
input=["Follow the white rabbit."],
model=model,
dimensions=1,
dimensions=32,
)
for data in responses.data:
print(data.embedding) # List of float of len 1
print(data.embedding) # List of float of len 32
if __name__ == "__main__":

View File

@ -11,11 +11,12 @@ import requests
from vllm.entrypoints.openai.protocol import EmbeddingResponse
from vllm.transformers_utils.tokenizer import get_tokenizer
from ...models.embedding.utils import check_embeddings_close
from ...models.embedding.utils import correctness_test
from ...utils import RemoteOpenAIServer
MODEL_NAME = "intfloat/multilingual-e5-small"
DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\\n'}}{% endfor %}""" # noqa: E501
DTYPE = "bfloat16"
@pytest.fixture(scope="module")
@ -25,7 +26,7 @@ def server():
"embed",
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
DTYPE,
"--enforce-eager",
"--max-model-len",
"512",
@ -43,9 +44,17 @@ async def client(server):
yield async_client
@pytest.fixture(scope="module")
def hf_model(hf_runner):
with hf_runner(MODEL_NAME, dtype=DTYPE,
is_sentence_transformer=True) as hf_model:
yield hf_model
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_embedding(client: openai.AsyncOpenAI, model_name: str):
async def test_single_embedding(hf_model, client: openai.AsyncOpenAI,
model_name: str):
input_texts = [
"The chef prepared a delicious meal.",
]
@ -66,6 +75,9 @@ async def test_single_embedding(client: openai.AsyncOpenAI, model_name: str):
assert embeddings.usage.prompt_tokens == 11
assert embeddings.usage.total_tokens == 11
vllm_outputs = [d.embedding for d in embeddings.data]
correctness_test(hf_model, input_texts, vllm_outputs)
# test using token IDs
input_tokens = [1, 1, 1, 1, 1]
embedding_response = await client.embeddings.create(
@ -86,7 +98,8 @@ async def test_single_embedding(client: openai.AsyncOpenAI, model_name: str):
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_embedding(client: openai.AsyncOpenAI, model_name: str):
async def test_batch_embedding(hf_model, client: openai.AsyncOpenAI,
model_name: str):
# test list[str]
input_texts = [
"The cat sat on the mat.", "A feline was resting on a rug.",
@ -107,6 +120,9 @@ async def test_batch_embedding(client: openai.AsyncOpenAI, model_name: str):
assert embeddings.usage.prompt_tokens == 33
assert embeddings.usage.total_tokens == 33
vllm_outputs = [d.embedding for d in embeddings.data]
correctness_test(hf_model, input_texts, vllm_outputs)
# test list[list[int]]
input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24],
[25, 32, 64, 77]]
@ -181,7 +197,7 @@ async def test_conversation_embedding(server: RemoteOpenAIServer,
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_base64_embedding(client: openai.AsyncOpenAI,
async def test_batch_base64_embedding(hf_model, client: openai.AsyncOpenAI,
model_name: str):
input_texts = [
"Hello my name is",
@ -192,6 +208,7 @@ async def test_batch_base64_embedding(client: openai.AsyncOpenAI,
model=model_name,
encoding_format="float")
float_data = [d.embedding for d in responses_float.data]
correctness_test(hf_model, input_texts, float_data)
responses_base64 = await client.embeddings.create(input=input_texts,
model=model_name,
@ -202,24 +219,13 @@ async def test_batch_base64_embedding(client: openai.AsyncOpenAI,
np.frombuffer(base64.b64decode(data.embedding),
dtype="float32").tolist())
check_embeddings_close(
embeddings_0_lst=float_data,
embeddings_1_lst=base64_data,
name_0="float",
name_1="base64",
)
correctness_test(hf_model, input_texts, base64_data)
# Default response is float32 decoded from base64 by OpenAI Client
responses_default = await client.embeddings.create(input=input_texts,
model=model_name)
default_data = [d.embedding for d in responses_default.data]
check_embeddings_close(
embeddings_0_lst=float_data,
embeddings_1_lst=default_data,
name_0="float",
name_1="default",
)
correctness_test(hf_model, input_texts, default_data)
@pytest.mark.asyncio

View File

@ -3,73 +3,121 @@
Run `pytest tests/entrypoints/openai/test_embedding_dimensions.py`.
"""
from typing import Optional
import openai
import pytest
from vllm.entrypoints.openai.protocol import EmbeddingResponse
from ...models.embedding.utils import EmbedModelInfo
from ...conftest import HfRunner
from ...models.embedding.utils import EmbedModelInfo, correctness_test
from ...utils import RemoteOpenAIServer
MODELS = [
EmbedModelInfo(name="BAAI/bge-m3", is_matryoshka=False),
EmbedModelInfo(name="jinaai/jina-embeddings-v3", is_matryoshka=True),
EmbedModelInfo("intfloat/multilingual-e5-small", is_matryoshka=False),
EmbedModelInfo("Snowflake/snowflake-arctic-embed-m-v1.5",
is_matryoshka=True,
matryoshka_dimensions=[256]),
]
input_texts = [
"The chef prepared a delicious meal.",
] * 3
]
@pytest.mark.asyncio
@pytest.mark.parametrize("model", MODELS)
async def test_validating_dimensions(model: EmbedModelInfo):
@pytest.fixture(scope="module", params=MODELS)
def model_info(request):
return request.param
@pytest.fixture(scope="module", params=["bfloat16"])
def dtype(request):
return request.param
@pytest.fixture(scope="module")
def server(model_info, dtype: str):
args = [
"--task",
"embed",
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
dtype,
"--enforce-eager",
"--max-model-len",
"512",
"--trust_remote_code"
"512"
]
with RemoteOpenAIServer(model.name, args) as remote_server:
client = remote_server.get_async_client()
async def make_request(dimensions):
embedding_response = await client.embeddings.create(
model=model.name,
input=input_texts,
dimensions=dimensions,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
if model_info.name == "Snowflake/snowflake-arctic-embed-m-v1.5":
# Manually enable Matryoshka Embeddings
args.extend([
"--trust_remote_code", "--hf_overrides",
'{"matryoshka_dimensions":[256]}'
])
assert embeddings.id is not None
assert len(embeddings.data) == 3
assert len(embeddings.data[0].embedding) > 0
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens > 0
assert embeddings.usage.total_tokens > 0
with RemoteOpenAIServer(model_info.name, args) as remote_server:
yield remote_server
if dimensions is not None:
assert len(embeddings.data[0].embedding) == dimensions
if model.is_matryoshka:
for dimensions in [None, 16]:
await make_request(dimensions)
@pytest.fixture(scope="module")
def hf_model(hf_runner, model_info, dtype: str):
with hf_runner(model_info.name, dtype=dtype,
is_sentence_transformer=True) as hf_model:
yield hf_model
@pytest.mark.asyncio
async def test_matryoshka(model_info: EmbedModelInfo,
server: RemoteOpenAIServer, hf_model: HfRunner):
client = server.get_async_client()
async def make_request_and_correctness_test(dimensions):
prompts = input_texts * 3
embedding_response = await client.embeddings.create(
model=model_info.name,
input=prompts,
dimensions=dimensions,
encoding_format="float",
)
embeddings = EmbeddingResponse.model_validate(
embedding_response.model_dump(mode="json"))
assert embeddings.id is not None
assert len(embeddings.data) == 3
assert len(embeddings.data[0].embedding) > 0
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens > 0
assert embeddings.usage.total_tokens > 0
if dimensions is not None:
assert len(embeddings.data[0].embedding) == dimensions
vllm_outputs = [d.embedding for d in embeddings.data]
correctness_test(hf_model, prompts, vllm_outputs, dimensions)
if model_info.is_matryoshka:
valid_dimensions: list[Optional[int]] = [None]
if model_info.matryoshka_dimensions is not None:
valid_dimensions += model_info.matryoshka_dimensions[:2]
for dimensions in valid_dimensions:
await make_request_and_correctness_test(dimensions)
invalid_dimensions: list[Optional[int]] = [-1]
if model_info.matryoshka_dimensions is not None:
assert 5 not in model_info.matryoshka_dimensions
invalid_dimensions.append(5)
for dimensions in invalid_dimensions:
with pytest.raises(openai.BadRequestError):
for dimensions in [-1]:
await make_request(dimensions)
await make_request_and_correctness_test(dimensions)
else:
for dimensions in [None]:
await make_request(dimensions)
else:
for dimensions in [None]:
await make_request_and_correctness_test(dimensions)
for dimensions in [-1, 16]:
with pytest.raises(openai.BadRequestError):
for dimensions in [-1, 16]:
await make_request(dimensions)
await make_request_and_correctness_test(dimensions)

View File

@ -153,14 +153,24 @@ def test_matryoshka(
with vllm_runner(model, task="embed", dtype=dtype,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.encode(
example_prompts,
pooling_params=PoolingParams(dimensions=dimensions))
matryoshka_dimensions = (
vllm_model.model.llm_engine.model_config.matryoshka_dimensions)
assert matryoshka_dimensions is not None
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)
if dimensions not in matryoshka_dimensions:
with pytest.raises(ValueError):
vllm_model.encode(
example_prompts,
pooling_params=PoolingParams(dimensions=dimensions))
else:
vllm_outputs = vllm_model.encode(
example_prompts,
pooling_params=PoolingParams(dimensions=dimensions))
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
from collections.abc import Sequence
from typing import NamedTuple
from typing import NamedTuple, Optional
import torch
import torch.nn.functional as F
@ -43,5 +43,24 @@ def matryoshka_fy(tensor, dimensions):
class EmbedModelInfo(NamedTuple):
name: str
is_matryoshka: bool
matryoshka_dimensions: Optional[list[int]] = None
architecture: str = ""
enable_test: bool = True
def correctness_test(hf_model,
inputs,
vllm_outputs: Sequence[list[float]],
dimensions: Optional[int] = None):
hf_outputs = hf_model.encode(inputs)
if dimensions:
hf_outputs = matryoshka_fy(hf_outputs, dimensions)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)

View File

@ -1248,6 +1248,10 @@ class ModelConfig:
return (hasattr(self.hf_config, "matryoshka_dimensions")
or getattr(self.hf_config, "is_matryoshka", False))
@property
def matryoshka_dimensions(self):
return getattr(self.hf_config, "matryoshka_dimensions", None)
BlockSize = Literal[1, 8, 16, 32, 64, 128]
CacheDType = Literal["auto", "fp8", "fp8_e4m3", "fp8_e5m2"]

View File

@ -35,7 +35,16 @@ class PoolingParams(
f'Model "{model_config.served_model_name}" does not '
f'support matryoshka representation, '
f'changing output dimensions will lead to poor results.')
if self.dimensions < 1:
mds = model_config.matryoshka_dimensions
if mds is not None:
if self.dimensions not in mds:
raise ValueError(
f'Model "{model_config.served_model_name}" '
f'only supports {str(mds)} matryoshka dimensions, '
f'use other output dimensions will '
f'lead to poor results.')
elif self.dimensions < 1:
raise ValueError("Dimensions must be greater than 0")
def __repr__(self) -> str: