diff --git a/docs/models/supported_models.md b/docs/models/supported_models.md
index 001a5b96174ac..79892ac757b5e 100644
--- a/docs/models/supported_models.md
+++ b/docs/models/supported_models.md
@@ -639,6 +639,7 @@ These models primarily accept the [`LLM.generate`](./generative_models.md#llmgen
| `ChameleonForConditionalGeneration` | Chameleon | T + I | `facebook/chameleon-7b`, etc. | | ✅︎ |
| `Cohere2VisionForConditionalGeneration` | Command A Vision | T + I+ | `CohereLabs/command-a-vision-07-2025`, etc. | | ✅︎ |
| `DeepseekVLV2ForCausalLM`^ | DeepSeek-VL2 | T + I+ | `deepseek-ai/deepseek-vl2-tiny`, `deepseek-ai/deepseek-vl2-small`, `deepseek-ai/deepseek-vl2`, etc. | | ✅︎ |
+| `DeepseekOCRForCausalLM` | DeepSeek-OCR | T + I+ | `deepseek-ai/DeepSeek-OCR`, etc. | | ✅︎ |
| `Ernie4_5_VLMoeForConditionalGeneration` | Ernie4.5-VL | T + I+/ V+ | `baidu/ERNIE-4.5-VL-28B-A3B-PT`, `baidu/ERNIE-4.5-VL-424B-A47B-PT` | | ✅︎ |
| `FuyuForCausalLM` | Fuyu | T + I | `adept/fuyu-8b`, etc. | | ✅︎ |
| `Gemma3nForConditionalGeneration` | Gemma 3n | T + I + A | `google/gemma-3n-E2B-it`, `google/gemma-3n-E4B-it`, etc. | | |
diff --git a/examples/offline_inference/vision_language.py b/examples/offline_inference/vision_language.py
index 35311a0ca7e1a..c5711ca9d0bce 100644
--- a/examples/offline_inference/vision_language.py
+++ b/examples/offline_inference/vision_language.py
@@ -30,6 +30,7 @@ class ModelRequestData(NamedTuple):
prompts: list[str]
stop_token_ids: list[int] | None = None
lora_requests: list[LoRARequest] | None = None
+ sampling_params: list[SamplingParams] | None = None
# NOTE: The default `max_num_seqs` and `max_model_len` may result in OOM on
@@ -153,23 +154,6 @@ def run_chameleon(questions: list[str], modality: str) -> ModelRequestData:
)
-# Dots-OCR
-def run_dots_ocr(questions: list[str], modality: str) -> ModelRequestData:
- assert modality == "image"
-
- prompts = [f"<|img|><|imgpad|><|endofimg|>{question}" for question in questions]
- engine_args = EngineArgs(
- model="rednote-hilab/dots.ocr",
- limit_mm_per_prompt={modality: 1},
- trust_remote_code=True,
- )
-
- return ModelRequestData(
- engine_args=engine_args,
- prompts=prompts,
- )
-
-
def run_command_a_vision(questions: list[str], modality: str) -> ModelRequestData:
assert modality == "image"
@@ -217,6 +201,66 @@ def run_deepseek_vl2(questions: list[str], modality: str) -> ModelRequestData:
)
+def run_deepseek_ocr(questions: list[str], modality: str) -> ModelRequestData:
+ from vllm.model_executor.models.deepseek_ocr import NGramPerReqLogitsProcessor
+
+ assert modality == "image"
+
+ model_name = "deepseek-ai/DeepSeek-OCR"
+
+ engine_args = EngineArgs(
+ model=model_name,
+ limit_mm_per_prompt={modality: 1},
+ logits_processors=[NGramPerReqLogitsProcessor],
+ )
+
+ # deepseek-ocr use plain prompt template
+ prompts = [f"\n{question}" for question in questions]
+
+ # The following sampling params config is taken from
+ # the official Deepseek-OCR inference example.
+ # (IMPORTANT) Use the custom logits processor and avoid skipping
+ # special tokens for this model for the optimal OCR performance.
+ sampling_params = [
+ SamplingParams(
+ temperature=0.0,
+ max_tokens=8192,
+ # ngram logit processor args
+ extra_args=dict(
+ ngram_size=30,
+ window_size=90,
+ # whitelist: | , |
+ whitelist_token_ids={128821, 128822},
+ ),
+ skip_special_tokens=False,
+ )
+ for _ in questions
+ ]
+
+ return ModelRequestData(
+ engine_args=engine_args,
+ prompts=prompts,
+ sampling_params=sampling_params,
+ )
+
+
+# Dots-OCR
+def run_dots_ocr(questions: list[str], modality: str) -> ModelRequestData:
+ assert modality == "image"
+
+ prompts = [f"<|img|><|imgpad|><|endofimg|>{question}" for question in questions]
+ engine_args = EngineArgs(
+ model="rednote-hilab/dots.ocr",
+ limit_mm_per_prompt={modality: 1},
+ trust_remote_code=True,
+ )
+
+ return ModelRequestData(
+ engine_args=engine_args,
+ prompts=prompts,
+ )
+
+
# Ernie4.5-VL
def run_ernie45_vl(questions: list[str], modality: str) -> ModelRequestData:
model_name = "baidu/ERNIE-4.5-VL-28B-A3B-PT"
@@ -1738,9 +1782,10 @@ model_example_map = {
"bee": run_bee,
"blip-2": run_blip2,
"chameleon": run_chameleon,
- "dots_ocr": run_dots_ocr,
"command_a_vision": run_command_a_vision,
"deepseek_vl_v2": run_deepseek_vl2,
+ "deepseek_ocr": run_deepseek_ocr,
+ "dots_ocr": run_dots_ocr,
"ernie45_vl": run_ernie45_vl,
"fuyu": run_fuyu,
"gemma3": run_gemma3,
@@ -2003,8 +2048,12 @@ def main(args):
# We set temperature to 0.2 so that outputs can be different
# even when all prompts are identical when running batch inference.
- sampling_params = SamplingParams(
- temperature=0.2, max_tokens=64, stop_token_ids=req_data.stop_token_ids
+ sampling_params = (
+ SamplingParams(
+ temperature=0.2, max_tokens=64, stop_token_ids=req_data.stop_token_ids
+ )
+ if req_data.sampling_params is None
+ else req_data.sampling_params
)
assert args.num_prompts > 0
diff --git a/tests/models/registry.py b/tests/models/registry.py
index 7345d2e07dc7b..bd5a4650081f4 100644
--- a/tests/models/registry.py
+++ b/tests/models/registry.py
@@ -585,6 +585,9 @@ _MULTIMODAL_EXAMPLE_MODELS = {
transformers_version_reason="HF model is not compatible.",
hf_overrides={"architectures": ["DeepseekVLV2ForCausalLM"]},
),
+ "DeepseekOCRForCausalLM": _HfExamplesInfo(
+ "deepseek-ai/DeepSeek-OCR",
+ ),
"DotsOCRForCausalLM": _HfExamplesInfo(
"rednote-hilab/dots.ocr", trust_remote_code=True
),
diff --git a/vllm/model_executor/models/deepencoder.py b/vllm/model_executor/models/deepencoder.py
new file mode 100644
index 0000000000000..e62a57eccc953
--- /dev/null
+++ b/vllm/model_executor/models/deepencoder.py
@@ -0,0 +1,673 @@
+# SPDX-License-Identifier: Apache-2.0
+# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
+
+# adapted from
+# https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek-OCR-master/DeepSeek-OCR-vllm/deepencoder/sam_vary_sdpa.py
+
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+import math
+from collections.abc import Iterable
+from functools import partial
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from transformers import CLIPVisionConfig
+
+from vllm.attention.layer import MultiHeadAttention
+from vllm.model_executor.layers.quantization import QuantizationConfig
+from vllm.model_executor.model_loader.weight_utils import default_weight_loader
+
+from .clip import CLIPEncoder, CLIPVisionEmbeddings
+
+
+class MLPBlock(nn.Module):
+ def __init__(
+ self,
+ embedding_dim: int,
+ mlp_dim: int,
+ act: type[nn.Module] = nn.GELU,
+ ) -> None:
+ super().__init__()
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
+ self.act = act()
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ return self.lin2(self.act(self.lin1(x)))
+
+
+# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
+# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
+class LayerNorm2d(nn.Module):
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
+ super().__init__()
+ self.weight = nn.Parameter(torch.ones(num_channels))
+ self.bias = nn.Parameter(torch.zeros(num_channels))
+ self.eps = eps
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ u = x.mean(1, keepdim=True)
+ s = (x - u).pow(2).mean(1, keepdim=True)
+ x = (x - u) / torch.sqrt(s + self.eps)
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
+ return x
+
+
+# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
+class ImageEncoderViT(nn.Module):
+ def __init__(
+ self,
+ img_size: int = 1024,
+ patch_size: int = 16,
+ in_chans: int = 3,
+ embed_dim: int = 768,
+ depth: int = 12,
+ num_heads: int = 12,
+ mlp_ratio: float = 4.0,
+ out_chans: int = 256,
+ qkv_bias: bool = True,
+ norm_layer: type[nn.Module] = nn.LayerNorm,
+ act_layer: type[nn.Module] = nn.GELU,
+ use_abs_pos: bool = True,
+ use_rel_pos: bool = False,
+ rel_pos_zero_init: bool = True,
+ window_size: int = 0,
+ global_attn_indexes: tuple[int, ...] = (),
+ ) -> None:
+ """
+ Args:
+ img_size (int): Input image size.
+ patch_size (int): Patch size.
+ in_chans (int): Number of input image channels.
+ embed_dim (int): Patch embedding dimension.
+ depth (int): Depth of ViT.
+ num_heads (int): Number of attention heads in each ViT block.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
+ norm_layer (nn.Module): Normalization layer.
+ act_layer (nn.Module): Activation layer.
+ use_abs_pos (bool): If True, use absolute positional embeddings.
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
+ window_size (int): Window size for window attention blocks.
+ global_attn_indexes (list): Indexes for blocks using global attention.
+ """ # noqa: E501
+ super().__init__()
+ self.img_size = img_size
+
+ self.patch_embed = PatchEmbed(
+ kernel_size=(patch_size, patch_size),
+ stride=(patch_size, patch_size),
+ in_chans=in_chans,
+ embed_dim=embed_dim,
+ )
+
+ self.pos_embed: nn.Parameter | None = None
+ if use_abs_pos:
+ # Initialize absolute positional embedding with pretrain image size.
+ self.pos_embed = nn.Parameter(
+ torch.zeros(
+ 1, img_size // patch_size, img_size // patch_size, embed_dim
+ )
+ )
+
+ self.blocks = nn.ModuleList()
+ for i in range(depth):
+ block = Block(
+ dim=embed_dim,
+ num_heads=num_heads,
+ mlp_ratio=mlp_ratio,
+ qkv_bias=qkv_bias,
+ norm_layer=norm_layer,
+ act_layer=act_layer,
+ use_rel_pos=use_rel_pos,
+ rel_pos_zero_init=rel_pos_zero_init,
+ window_size=window_size if i not in global_attn_indexes else 0,
+ input_size=(img_size // patch_size, img_size // patch_size),
+ )
+ self.blocks.append(block)
+
+ self.neck = nn.Sequential(
+ nn.Conv2d(
+ embed_dim,
+ out_chans,
+ kernel_size=1,
+ bias=False,
+ ),
+ LayerNorm2d(out_chans),
+ nn.Conv2d(
+ out_chans,
+ out_chans,
+ kernel_size=3,
+ padding=1,
+ bias=False,
+ ),
+ LayerNorm2d(out_chans),
+ )
+
+ self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
+ self.net_3 = nn.Conv2d(
+ 512, 1024, kernel_size=3, stride=2, padding=1, bias=False
+ )
+
+ def get_abs_pos(self, abs_pos: torch.Tensor, tgt_size: int):
+ dtype = abs_pos.dtype
+
+ src_size = abs_pos.size(1)
+
+ if src_size != tgt_size:
+ old_pos_embed = abs_pos.permute(0, 3, 1, 2)
+ old_pos_embed = old_pos_embed.to(torch.float32)
+ new_pos_embed = F.interpolate(
+ old_pos_embed,
+ size=(tgt_size, tgt_size),
+ mode="bicubic",
+ antialias=True,
+ align_corners=False,
+ ).to(dtype)
+ new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
+ return new_pos_embed
+ else:
+ return abs_pos
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ x = self.patch_embed(x)
+ if self.pos_embed is not None:
+ x = x + self.get_abs_pos(self.pos_embed, x.size(1))
+
+ for blk in self.blocks:
+ x = blk(x)
+
+ neck_output = self.neck(x.permute(0, 3, 1, 2))
+ conv2_output = self.net_2(neck_output)
+ conv3_output = self.net_3(conv2_output)
+
+ return conv3_output
+
+
+class Block(nn.Module):
+ """Transformer blocks with support of window attention and residual propagation
+ blocks"""
+
+ def __init__(
+ self,
+ dim: int,
+ num_heads: int,
+ mlp_ratio: float = 4.0,
+ qkv_bias: bool = True,
+ norm_layer: type[nn.Module] = nn.LayerNorm,
+ act_layer: type[nn.Module] = nn.GELU,
+ use_rel_pos: bool = False,
+ rel_pos_zero_init: bool = True,
+ window_size: int = 0,
+ input_size: tuple[int, int] | None = None,
+ ) -> None:
+ """
+ Args:
+ dim (int): Number of input channels.
+ num_heads (int): Number of attention heads in each ViT block.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
+ norm_layer (nn.Module): Normalization layer.
+ act_layer (nn.Module): Activation layer.
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
+ window_size (int): Window size for window attention blocks. If it equals 0, then
+ use global attention.
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
+ positional parameter size.
+ """ # noqa: E501
+ super().__init__()
+ self.norm1 = norm_layer(dim)
+ self.attn = RelPosAttention(
+ dim,
+ num_heads=num_heads,
+ qkv_bias=qkv_bias,
+ use_rel_pos=use_rel_pos,
+ rel_pos_zero_init=rel_pos_zero_init,
+ input_size=input_size if window_size == 0 else (window_size, window_size),
+ )
+
+ self.norm2 = norm_layer(dim)
+ self.mlp = MLPBlock(
+ embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer
+ )
+
+ self.window_size = window_size
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ shortcut = x
+ x = self.norm1(x)
+ # Window partition
+ if self.window_size > 0:
+ H, W = x.shape[1], x.shape[2]
+ x, pad_hw = window_partition(x, self.window_size)
+
+ x = self.attn(x)
+ # Reverse window partition
+ if self.window_size > 0:
+ x = window_unpartition(x, self.window_size, pad_hw, (H, W))
+
+ x = shortcut + x
+ x = x + self.mlp(self.norm2(x))
+
+ return x
+
+
+class RelPosAttention(nn.Module):
+ """Multi-head Attention block with relative position embeddings."""
+
+ def __init__(
+ self,
+ dim: int,
+ num_heads: int = 8,
+ qkv_bias: bool = True,
+ use_rel_pos: bool = False,
+ rel_pos_zero_init: bool = True,
+ input_size: tuple[int, int] | None = None,
+ ) -> None:
+ """
+ Args:
+ dim (int): Number of input channels.
+ num_heads (int): Number of attention heads.
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
+ positional parameter size.
+ """ # noqa: E501
+ super().__init__()
+ self.num_heads = num_heads
+ head_dim = dim // num_heads
+ self.scale = head_dim**-0.5
+
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
+ self.proj = nn.Linear(dim, dim)
+
+ self.use_rel_pos = use_rel_pos
+ if self.use_rel_pos:
+ assert input_size is not None, (
+ "Input size must be provided if using relative positional encoding."
+ )
+ # initialize relative positional embeddings
+ self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
+ self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ B, H, W, _ = x.shape
+ # qkv with shape (3, B, nHead, H * W, C)
+ qkv = (
+ self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
+ )
+ # q, k, v with shape (B * nHead, H * W, C)
+ q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
+
+ rel_h, rel_w = None, None
+ if self.use_rel_pos:
+ rel_h, rel_w = add_decomposed_rel_pos(
+ q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)
+ )
+
+ q = q.view(B, self.num_heads, H * W, -1)
+ k = k.view(B, self.num_heads, H * W, -1)
+ v = v.view(B, self.num_heads, H * W, -1)
+
+ if self.use_rel_pos:
+ rel_h = rel_h.view(
+ B, self.num_heads, rel_h.size(1), rel_h.size(2), rel_h.size(3)
+ )
+ rel_w = rel_w.view(
+ B, self.num_heads, rel_w.size(1), rel_w.size(2), rel_w.size(3)
+ )
+ attn_bias = (rel_h + rel_w).view(
+ B, self.num_heads, rel_h.size(2), rel_h.size(3) * rel_w.size(4)
+ )
+ x = torch.nn.functional.scaled_dot_product_attention(
+ q, k, v, attn_mask=attn_bias
+ )
+ else:
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
+
+ x = (
+ x.view(B, self.num_heads, H, W, -1)
+ .permute(0, 2, 3, 1, 4)
+ .reshape(B, H, W, -1)
+ )
+
+ x = self.proj(x)
+
+ return x
+
+
+def window_partition(
+ x: torch.Tensor, window_size: int
+) -> tuple[torch.Tensor, tuple[int, int]]:
+ """
+ Partition into non-overlapping windows with padding if needed.
+ Args:
+ x (tensor): input tokens with [B, H, W, C].
+ window_size (int): window size.
+
+ Returns:
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
+ (Hp, Wp): padded height and width before partition
+ """ # noqa: E501
+ B, H, W, C = x.shape
+
+ pad_h = (window_size - H % window_size) % window_size
+ pad_w = (window_size - W % window_size) % window_size
+ if pad_h > 0 or pad_w > 0:
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
+ Hp, Wp = H + pad_h, W + pad_w
+
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
+ windows = (
+ x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
+ )
+ return windows, (Hp, Wp)
+
+
+def window_unpartition(
+ windows: torch.Tensor,
+ window_size: int,
+ pad_hw: tuple[int, int],
+ hw: tuple[int, int],
+) -> torch.Tensor:
+ """
+ Window unpartition into original sequences and removing padding.
+ Args:
+ windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
+ window_size (int): window size.
+ pad_hw (Tuple): padded height and width (Hp, Wp).
+ hw (Tuple): original height and width (H, W) before padding.
+
+ Returns:
+ x: unpartitioned sequences with [B, H, W, C].
+ """ # noqa: E501
+ Hp, Wp = pad_hw
+ H, W = hw
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
+ x = windows.view(
+ B, Hp // window_size, Wp // window_size, window_size, window_size, -1
+ )
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
+
+ if Hp > H or Wp > W:
+ x = x[:, :H, :W, :].contiguous()
+ return x
+
+
+def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
+ """
+ Get relative positional embeddings according to the relative positions of
+ query and key sizes.
+ Args:
+ q_size (int): size of query q.
+ k_size (int): size of key k.
+ rel_pos (Tensor): relative position embeddings (L, C).
+
+ Returns:
+ Extracted positional embeddings according to relative positions.
+ """
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
+ # Interpolate rel pos if needed.
+ if rel_pos.shape[0] != max_rel_dist:
+ # Interpolate rel pos.
+ dtype = rel_pos.dtype
+ rel_pos = rel_pos.to(torch.float32)
+ rel_pos_resized = F.interpolate(
+ rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
+ size=max_rel_dist,
+ mode="linear",
+ ).to(dtype)
+ rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
+ else:
+ rel_pos_resized = rel_pos
+
+ # Scale the coords with short length if shapes for q and k are different.
+ q_coords = torch.arange(q_size, device=rel_pos.device)[:, None] * max(
+ k_size / q_size, 1.0
+ )
+ k_coords = torch.arange(k_size, device=rel_pos.device)[None, :] * max(
+ q_size / k_size, 1.0
+ )
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
+
+ return rel_pos_resized[relative_coords.long()]
+
+
+def add_decomposed_rel_pos(
+ q: torch.Tensor,
+ rel_pos_h: torch.Tensor,
+ rel_pos_w: torch.Tensor,
+ q_size: tuple[int, int],
+ k_size: tuple[int, int],
+) -> torch.Tensor:
+ """
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py
+ Args:
+ q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
+ rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
+ rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
+ q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
+ k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
+
+ Returns:
+ attn (Tensor): attention map with added relative positional embeddings.
+ """ # noqa: E501
+ q_h, q_w = q_size
+ k_h, k_w = k_size
+ Rh = get_rel_pos(q_h, k_h, rel_pos_h)
+ Rw = get_rel_pos(q_w, k_w, rel_pos_w)
+
+ B, _, dim = q.shape
+ r_q = q.reshape(B, q_h, q_w, dim)
+ rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
+ rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
+ rel_h = rel_h.unsqueeze(-1)
+ rel_w = rel_w.unsqueeze(-2)
+ rel_h = rel_h.reshape(B, q_h * q_w, k_h, 1)
+ rel_w = rel_w.reshape(B, q_h * q_w, 1, k_w)
+
+ return rel_h, rel_w
+
+
+class PatchEmbed(nn.Module):
+ """
+ Image to Patch Embedding.
+ """
+
+ def __init__(
+ self,
+ kernel_size: tuple[int, int] = (16, 16),
+ stride: tuple[int, int] = (16, 16),
+ padding: tuple[int, int] = (0, 0),
+ in_chans: int = 3,
+ embed_dim: int = 768,
+ ) -> None:
+ """
+ Args:
+ kernel_size (Tuple): kernel size of the projection layer.
+ stride (Tuple): stride of the projection layer.
+ padding (Tuple): padding size of the projection layer.
+ in_chans (int): Number of input image channels.
+ embed_dim (int): Patch embedding dimension.
+ """
+ super().__init__()
+
+ self.proj = nn.Conv2d(
+ in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
+ )
+
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
+ x = self.proj(x)
+ # B C H W -> B H W C
+ x = x.permute(0, 2, 3, 1)
+ return x
+
+
+# TODO(Isotr0py): use vision_config to build sam model
+def build_sam_vit_b():
+ return _build_sam(
+ encoder_embed_dim=768,
+ encoder_depth=12,
+ encoder_num_heads=12,
+ encoder_global_attn_indexes=[2, 5, 8, 11],
+ )
+
+
+def _build_sam(
+ encoder_embed_dim,
+ encoder_depth,
+ encoder_num_heads,
+ encoder_global_attn_indexes,
+):
+ prompt_embed_dim = 256
+ image_size = 1024
+ vit_patch_size = 16
+ image_encoder = ImageEncoderViT(
+ depth=encoder_depth,
+ embed_dim=encoder_embed_dim,
+ img_size=image_size,
+ mlp_ratio=4,
+ norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
+ num_heads=encoder_num_heads,
+ patch_size=vit_patch_size,
+ qkv_bias=True,
+ use_rel_pos=True,
+ global_attn_indexes=encoder_global_attn_indexes,
+ window_size=14,
+ out_chans=prompt_embed_dim,
+ )
+ return image_encoder
+
+
+class DeepCLIPVisionEmbeddings(CLIPVisionEmbeddings):
+ def get_abs_pos(self, abs_pos: torch.Tensor, tgt_size: int):
+ # abs_pos: L, C
+ # tgt_size: M
+ # return: M, C
+ dim = abs_pos.size(-1)
+ abs_pos_new = abs_pos.squeeze(0)
+ cls_token, old_pos_embed = abs_pos_new[:1], abs_pos_new[1:]
+
+ src_size = int(math.sqrt(abs_pos_new.shape[0] - 1))
+ tgt_size = int(math.sqrt(tgt_size))
+ dtype = abs_pos.dtype
+
+ if src_size != tgt_size:
+ old_pos_embed = (
+ old_pos_embed.view(1, src_size, src_size, dim)
+ .permute(0, 3, 1, 2)
+ .contiguous()
+ )
+ old_pos_embed = old_pos_embed.to(torch.float32)
+ new_pos_embed = F.interpolate(
+ old_pos_embed,
+ size=(tgt_size, tgt_size),
+ mode="bicubic",
+ antialias=True,
+ align_corners=False,
+ ).to(dtype)
+ new_pos_embed = new_pos_embed.permute(0, 2, 3, 1)
+ new_pos_embed = new_pos_embed.view(tgt_size * tgt_size, dim)
+ vision_pos_embed = torch.cat([cls_token, new_pos_embed], dim=0)
+ vision_pos_embed = vision_pos_embed.view(1, tgt_size * tgt_size + 1, dim)
+ return vision_pos_embed
+ else:
+ return abs_pos
+
+ def forward(
+ self, pixel_values: torch.Tensor, patch_embeds: torch.Tensor | None = None
+ ) -> torch.Tensor:
+ batch_size = pixel_values.shape[0]
+ if patch_embeds is not None:
+ patch_embeds = patch_embeds
+ else:
+ patch_embeds = self.patch_embedding(pixel_values)
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
+
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
+ embeddings = embeddings + self.get_abs_pos(
+ self.position_embedding(self.position_ids), embeddings.size(1)
+ )
+ return embeddings
+
+
+class DeepCLIPVisionTransformer(nn.Module):
+ def __init__(
+ self,
+ config: CLIPVisionConfig,
+ quant_config: QuantizationConfig | None = None,
+ *,
+ num_hidden_layers_override: int | None = None,
+ prefix: str = "",
+ ) -> None:
+ super().__init__()
+
+ self.config = config
+ embed_dim = config.hidden_size
+
+ self.embeddings = DeepCLIPVisionEmbeddings(config)
+
+ # NOTE: This typo of "layrnorm" is not fixed on purpose to match
+ # the original transformers code and name of the model weights.
+ self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+
+ self.transformer = CLIPEncoder(
+ config=config,
+ quant_config=quant_config,
+ num_hidden_layers_override=num_hidden_layers_override,
+ prefix=f"{prefix}.encoder",
+ attn_cls=MultiHeadAttention,
+ )
+
+ num_hidden_layers = config.num_hidden_layers
+ if len(self.transformer.layers) > config.num_hidden_layers:
+ raise ValueError(
+ f"The original encoder only has {num_hidden_layers} "
+ f"layers, but you requested {len(self.transformer.layers)} layers."
+ )
+
+ @property
+ def dtype(self):
+ return next(self.parameters()).dtype
+
+ @property
+ def device(self):
+ return next(self.parameters()).device
+
+ def forward(
+ self,
+ pixel_values: torch.Tensor,
+ patch_embeds: torch.Tensor | None = None,
+ *,
+ select_layers: list[int] | None = None,
+ ) -> torch.Tensor:
+ hidden_states = self.embeddings(pixel_values, patch_embeds)
+ hidden_states = self.pre_layrnorm(hidden_states)
+
+ # Produces either the last layer output or all of the hidden states,
+ # depending on if we have select_layers or not
+ encoder_outputs = self.transformer(
+ inputs_embeds=hidden_states,
+ return_all_hidden_states=select_layers is not None,
+ )
+ return encoder_outputs
+
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
+ params_dict = dict(self.named_parameters())
+ loaded_params: set[str] = set()
+
+ for name, loaded_weight in weights:
+ param = params_dict[name]
+ weight_loader = getattr(param, "weight_loader", default_weight_loader)
+ weight_loader(param, loaded_weight)
+ loaded_params.add(name)
+ return loaded_params
diff --git a/vllm/model_executor/models/deepseek_ocr.py b/vllm/model_executor/models/deepseek_ocr.py
new file mode 100644
index 0000000000000..c9064dabc0ab3
--- /dev/null
+++ b/vllm/model_executor/models/deepseek_ocr.py
@@ -0,0 +1,594 @@
+# SPDX-License-Identifier: Apache-2.0
+# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
+"""Inference-only Deepseek-OCR model compatible with HuggingFace weights."""
+
+import math
+from collections.abc import Iterable, Mapping, Sequence
+
+import torch
+import torch.nn as nn
+from transformers import BatchFeature, CLIPVisionConfig
+
+from vllm.config import VllmConfig
+from vllm.config.multimodal import BaseDummyOptions
+from vllm.model_executor.models.interfaces import (
+ MultiModalEmbeddings,
+ SupportsMultiModal,
+ SupportsPP,
+)
+from vllm.model_executor.models.utils import (
+ AutoWeightsLoader,
+ WeightsMapper,
+ init_vllm_registered_model,
+ maybe_prefix,
+)
+from vllm.multimodal import MULTIMODAL_REGISTRY
+from vllm.multimodal.inputs import (
+ MultiModalDataDict,
+ MultiModalFieldConfig,
+ MultiModalKwargs,
+ NestedTensors,
+)
+from vllm.multimodal.parse import (
+ ImageEmbeddingItems,
+ ImageProcessorItems,
+ ImageSize,
+ MultiModalDataItems,
+)
+from vllm.multimodal.processing import (
+ BaseMultiModalProcessor,
+ BaseProcessingInfo,
+ PromptReplacement,
+ PromptUpdate,
+)
+from vllm.multimodal.profiling import BaseDummyInputsBuilder
+from vllm.sampling_params import SamplingParams
+from vllm.sequence import IntermediateTensors
+from vllm.transformers_utils.configs.deepseek_vl2 import DeepseekVLV2Config
+from vllm.transformers_utils.processors.deepseek_ocr import (
+ BASE_SIZE,
+ CROP_MODE,
+ IMAGE_SIZE,
+ DeepseekOCRProcessor,
+ count_tiles,
+)
+from vllm.transformers_utils.tokenizer import cached_tokenizer_from_config
+from vllm.v1.sample.logits_processor import (
+ AdapterLogitsProcessor,
+ RequestLogitsProcessor,
+)
+
+from .deepencoder import DeepCLIPVisionTransformer, build_sam_vit_b
+from .deepseek_vl2 import MlpProjector
+
+# The image token id may be various
+_IMAGE_TOKEN = ""
+
+
+class NoRepeatNGramLogitsProcessor:
+ def __init__(
+ self,
+ ngram_size: int,
+ window_size: int,
+ whitelist_token_ids: set[int] | None = None,
+ ):
+ self.ngram_size = ngram_size
+ self.window_size = window_size
+ self.whitelist_token_ids = whitelist_token_ids or set()
+
+ def __call__(
+ self,
+ output_ids: list[int],
+ logits: torch.Tensor,
+ ) -> torch.Tensor:
+ if len(output_ids) < self.ngram_size:
+ return logits
+
+ current_prefix = tuple(output_ids[-(self.ngram_size - 1) :])
+
+ search_start = max(0, len(output_ids) - self.window_size)
+ search_end = len(output_ids) - self.ngram_size + 1
+
+ banned_tokens = set()
+ for i in range(search_start, search_end):
+ ngram = tuple(output_ids[i : i + self.ngram_size])
+ if ngram[:-1] == current_prefix:
+ banned_tokens.add(ngram[-1])
+
+ banned_tokens = banned_tokens - self.whitelist_token_ids
+
+ if banned_tokens:
+ logits[list(banned_tokens)] = -float("inf")
+
+ return logits
+
+
+class NGramPerReqLogitsProcessor(AdapterLogitsProcessor):
+ """Example of overriding the wrapper class `__init__()` in order to utilize
+ info about the device type"""
+
+ def __init__(
+ self, vllm_config: VllmConfig, device: torch.device, is_pin_memory: bool
+ ):
+ super().__init__(vllm_config, device, is_pin_memory)
+
+ def is_argmax_invariant(self) -> bool:
+ return True
+
+ def new_req_logits_processor(
+ self,
+ params: SamplingParams,
+ ) -> RequestLogitsProcessor | None:
+ ngram_size = params.extra_args and params.extra_args.get("ngram_size")
+ window_size = params.extra_args and params.extra_args.get("window_size", 100)
+ whitelist_token_ids = params.extra_args and params.extra_args.get(
+ "whitelist_token_ids", None
+ )
+ if ngram_size is None:
+ return None
+ if not isinstance(ngram_size, int) or ngram_size <= 0:
+ raise ValueError(
+ f"`ngram_size` has to be a strictly positive integer, got {ngram_size}."
+ )
+ if not isinstance(window_size, int) or window_size <= 0:
+ raise ValueError(
+ "`window_size` has to be a strictly positive integer, "
+ f"got {window_size}."
+ )
+ if whitelist_token_ids is not None and not isinstance(
+ whitelist_token_ids, Iterable
+ ):
+ raise ValueError(
+ "`whitelist_token_ids` has to be a set of integers, "
+ f"got {whitelist_token_ids}."
+ )
+ else:
+ whitelist_token_ids = (
+ set(whitelist_token_ids) if whitelist_token_ids else None
+ )
+ return NoRepeatNGramLogitsProcessor(
+ ngram_size=ngram_size,
+ window_size=window_size,
+ whitelist_token_ids=whitelist_token_ids,
+ )
+
+
+class DeepseekOCRProcessingInfo(BaseProcessingInfo):
+ def get_hf_config(self):
+ return self.ctx.get_hf_config(DeepseekVLV2Config)
+
+ def get_hf_processor(self, **kwargs: object):
+ return self.ctx.get_hf_processor(DeepseekOCRProcessor, **kwargs)
+
+ def get_supported_mm_limits(self) -> Mapping[str, int | None]:
+ return {"image": None}
+
+ def get_num_image_tokens(
+ self, *, image_width: int, image_height: int, cropping: bool = True
+ ) -> int:
+ image_size = IMAGE_SIZE
+ base_size = BASE_SIZE
+ patch_size = 16
+ downsample_ratio = 4
+
+ if CROP_MODE:
+ if image_width <= 640 and image_height <= 640:
+ crop_ratio = [1, 1]
+ else:
+ # find the closest aspect ratio to the target
+ crop_ratio = count_tiles(
+ image_width, image_height, image_size=IMAGE_SIZE
+ )
+
+ num_width_tiles, num_height_tiles = crop_ratio
+ else:
+ num_width_tiles = num_height_tiles = 1
+
+ h = w = math.ceil((base_size // patch_size) / downsample_ratio)
+
+ h2 = w2 = math.ceil((image_size // patch_size) / downsample_ratio)
+
+ global_views_tokens = h * (w + 1)
+ if num_width_tiles > 1 or num_height_tiles > 1:
+ local_views_tokens = (num_height_tiles * h2) * (num_width_tiles * w2 + 1)
+ else:
+ local_views_tokens = 0
+
+ return global_views_tokens + local_views_tokens + 1
+
+ def get_image_size_with_most_features(self) -> ImageSize:
+ if IMAGE_SIZE == 1024 and BASE_SIZE == 1280:
+ return ImageSize(width=1024 * 2, height=1024 * 2)
+ return ImageSize(width=640 * 2, height=640 * 2)
+
+
+class DeepseekOCRDummyInputsBuilder(BaseDummyInputsBuilder[DeepseekOCRProcessingInfo]):
+ def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
+ num_images = mm_counts.get("image", 0)
+
+ processor = self.info.get_hf_processor()
+ image_token = processor.image_token
+
+ return image_token * num_images
+
+ def get_dummy_mm_data(
+ self,
+ seq_len: int,
+ mm_counts: Mapping[str, int],
+ mm_options: Mapping[str, BaseDummyOptions] | None = None,
+ ) -> MultiModalDataDict:
+ num_images = mm_counts.get("image", 0)
+
+ max_image_size = self.info.get_image_size_with_most_features()
+
+ return {
+ "image": self._get_dummy_images(
+ width=max_image_size.width,
+ height=max_image_size.height,
+ num_images=num_images,
+ )
+ }
+
+
+class DeepseekOCRMultiModalProcessor(
+ BaseMultiModalProcessor[DeepseekOCRProcessingInfo]
+):
+ def _call_hf_processor(
+ self,
+ prompt: str,
+ mm_data: Mapping[str, object],
+ mm_kwargs: Mapping[str, object],
+ tok_kwargs: Mapping[str, object],
+ ) -> BatchFeature:
+ if mm_data:
+ processed_outputs = self.info.ctx.call_hf_processor(
+ self.info.get_hf_processor(**mm_kwargs),
+ dict(prompt=prompt, **mm_data),
+ mm_kwargs,
+ )
+
+ else:
+ tokenizer = self.info.get_tokenizer()
+ processed_outputs = tokenizer(
+ prompt, add_special_tokens=True, return_tensors="pt"
+ )
+
+ return processed_outputs
+
+ def _get_mm_fields_config(
+ self,
+ hf_inputs: BatchFeature,
+ hf_processor_mm_kwargs: Mapping[str, object],
+ ) -> Mapping[str, MultiModalFieldConfig]:
+ return dict(
+ pixel_values=MultiModalFieldConfig.batched("image"),
+ images_spatial_crop=MultiModalFieldConfig.batched("image"),
+ images_crop=MultiModalFieldConfig.batched("image"),
+ )
+
+ def _get_prompt_updates(
+ self,
+ mm_items: MultiModalDataItems,
+ hf_processor_mm_kwargs: Mapping[str, object],
+ out_mm_kwargs: MultiModalKwargs,
+ ) -> Sequence[PromptUpdate]:
+ hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
+
+ image_token_id = hf_processor.image_token_id
+ assert isinstance(image_token_id, int)
+
+ def get_replacement_deepseek_vl2(item_idx: int):
+ images = mm_items.get_items(
+ "image", (ImageEmbeddingItems, ImageProcessorItems)
+ )
+
+ if isinstance(images, ImageEmbeddingItems):
+ num_image_tokens = images.get_feature_size(item_idx)
+ else:
+ size = images.get_image_size(item_idx)
+
+ num_image_tokens = self.info.get_num_image_tokens(
+ image_width=size.width,
+ image_height=size.height,
+ cropping=CROP_MODE,
+ )
+ return [image_token_id] * num_image_tokens
+
+ return [
+ PromptReplacement(
+ modality="image",
+ target=[image_token_id],
+ replacement=get_replacement_deepseek_vl2,
+ )
+ ]
+
+ # TODO(Isotr0py): Check if we still need this workaround for
+ # deepseek-ocr processor.
+ # def _cached_apply_hf_processor(
+ # self,
+ # prompt: str | list[int],
+ # mm_data_items: MultiModalDataItems,
+ # hf_processor_mm_kwargs: Mapping[str, object],
+ # tokenization_kwargs: Mapping[str, object],
+ # mm_uuids: MultiModalUUIDDict | None = None,
+ # ) -> tuple[list[int], MultiModalKwargs, bool]:
+ # # The processor logic is different for len(images) <= 2 vs > 2
+ # # Since the processing cache assumes that the processor output is
+ # # invariant of how many images are passed per prompt, we only
+ # # perform caching for the most common case
+ # if mm_data_items.get_count("image", strict=False) > 2:
+ # # This code path corresponds to the cache being disabled
+ # return self._apply_hf_processor_main(
+ # prompt=prompt,
+ # mm_items=mm_data_items,
+ # hf_processor_mm_kwargs=hf_processor_mm_kwargs,
+ # enable_hf_prompt_update=True,
+ # )
+
+ # return super()._cached_apply_hf_processor(
+ # prompt=prompt,
+ # mm_data_items=mm_data_items,
+ # hf_processor_mm_kwargs=hf_processor_mm_kwargs,
+ # )
+
+
+@MULTIMODAL_REGISTRY.register_processor(
+ DeepseekOCRMultiModalProcessor,
+ info=DeepseekOCRProcessingInfo,
+ dummy_inputs=DeepseekOCRDummyInputsBuilder,
+)
+class DeepseekOCRForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
+ hf_to_vllm_mapper = WeightsMapper(
+ orig_to_new_prefix={
+ # map prefix for language backbone
+ "model.embed_tokens.": "language_model.model.embed_tokens.",
+ "model.layers.": "language_model.model.layers.",
+ "model.norm.": "language_model.model.norm.",
+ "lm_head.": "language_model.lm_head.",
+ # remove "model." prefix for other components
+ "model.": "",
+ }
+ )
+
+ @classmethod
+ def get_placeholder_str(cls, modality: str, i: int) -> str | None:
+ if modality.startswith("image"):
+ return ""
+
+ raise ValueError("Only image modality is supported")
+
+ def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
+ super().__init__()
+
+ config: DeepseekVLV2Config = vllm_config.model_config.hf_config
+ quant_config = vllm_config.quant_config
+ multimodal_config = vllm_config.model_config.multimodal_config
+
+ self.config = config
+ self.multimodal_config = multimodal_config
+
+ self.vision_config = config.vision_config
+ self.projector_config = config.projector_config
+ self.text_config = config.text_config
+
+ model_config = vllm_config.model_config
+ tokenizer = cached_tokenizer_from_config(model_config)
+ self.image_token_id = tokenizer.vocab[_IMAGE_TOKEN]
+
+ self.sam_model = build_sam_vit_b()
+ clip_vision_config = CLIPVisionConfig(
+ hidden_size=1024,
+ intermediate_size=4096,
+ num_attention_heads=16,
+ num_hidden_layers=24,
+ image_size=224,
+ patch_size=14,
+ projection_dim=512,
+ layer_norm_eps=1e-5,
+ )
+ self.vision_model = DeepCLIPVisionTransformer(
+ config=clip_vision_config,
+ quant_config=quant_config,
+ )
+
+ self.projector = MlpProjector(self.projector_config)
+ self.tile_tag = config.tile_tag
+ self.global_view_pos = config.global_view_pos
+
+ # special token for image token sequence format
+ n_embed = self.projector_config.n_embed
+ embed_std = 1 / torch.sqrt(torch.tensor(n_embed, dtype=torch.float32))
+ if self.tile_tag == "2D":
+ # <|view_separator|>, <|\n|>
+ self.image_newline = nn.Parameter(torch.randn(n_embed) * embed_std)
+ # This is a typo in original implementation
+ self.view_seperator = nn.Parameter(torch.randn(n_embed) * embed_std)
+ else:
+ raise ValueError(
+ f"Only 2D tile_tag is supported currently, got: {self.tile_tag}"
+ )
+
+ if self.text_config.topk_method == "noaux_tc":
+ architectures = ["DeepseekV3ForCausalLM"]
+ elif not self.text_config.use_mla:
+ architectures = ["DeepseekForCausalLM"]
+ else:
+ architectures = ["DeepseekV2ForCausalLM"]
+
+ self.language_model = init_vllm_registered_model(
+ vllm_config=vllm_config,
+ hf_config=self.text_config,
+ prefix=maybe_prefix(prefix, "language_model"),
+ architectures=architectures,
+ )
+
+ self.make_empty_intermediate_tensors = (
+ self.language_model.make_empty_intermediate_tensors
+ )
+
+ def _parse_and_validate_image_input(self, **kwargs: object):
+ pixel_values = kwargs.pop("pixel_values", None)
+ images_spatial_crop = kwargs.pop("images_spatial_crop", None)
+ images_crop = kwargs.pop("images_crop", None)
+
+ if pixel_values is None or torch.sum(pixel_values).item() == 0:
+ return None
+
+ if pixel_values is not None:
+ if not isinstance(pixel_values, (torch.Tensor, list)):
+ raise ValueError(
+ f"Incorrect type of pixel values. Got type: {type(pixel_values)}"
+ )
+
+ if not isinstance(images_spatial_crop, (torch.Tensor, list)):
+ raise ValueError(
+ "Incorrect type of image sizes. "
+ f"Got type: {type(images_spatial_crop)}"
+ )
+
+ if not isinstance(images_crop, (torch.Tensor, list)):
+ raise ValueError(
+ f"Incorrect type of image crop. Got type: {type(images_crop)}"
+ )
+
+ return [pixel_values, images_crop, images_spatial_crop]
+
+ raise AssertionError("This line should be unreachable.")
+
+ def _encode_global_features(self, image_tensor: torch.Tensor) -> torch.Tensor:
+ global_features_1 = self.sam_model(image_tensor)
+ global_features_2 = self.vision_model(image_tensor, global_features_1)
+ features = torch.cat(
+ (
+ global_features_2[:, 1:],
+ global_features_1.flatten(2).permute(0, 2, 1),
+ ),
+ dim=-1,
+ )
+ features = self.projector(features)
+
+ _, hw, dim = features.shape
+ side = int(hw**0.5)
+
+ features = features.view(side, side, dim)
+ newline = self.image_newline[None, None, :].expand(side, 1, dim)
+ features = torch.cat([features, newline], dim=1)
+ return features.view(-1, dim)
+
+ def _encode_local_features(
+ self, patches: torch.Tensor, crop_shape: torch.Tensor
+ ) -> torch.Tensor | None:
+ if torch.sum(patches).item() == 0:
+ return None
+
+ local_features_1 = self.sam_model(patches)
+ local_features_2 = self.vision_model(patches, local_features_1)
+ features = torch.cat(
+ (
+ local_features_2[:, 1:],
+ local_features_1.flatten(2).permute(0, 2, 1),
+ ),
+ dim=-1,
+ )
+ features = self.projector(features)
+
+ _, hw, dim = features.shape
+ patch_side = int(hw**0.5)
+
+ width_tiles = int(crop_shape[0].item())
+ height_tiles = int(crop_shape[1].item())
+
+ features = (
+ features.view(height_tiles, width_tiles, patch_side, patch_side, dim)
+ .permute(0, 2, 1, 3, 4)
+ .reshape(height_tiles * patch_side, width_tiles * patch_side, dim)
+ )
+ newline = self.image_newline[None, None, :].expand(
+ height_tiles * patch_side, 1, dim
+ )
+ features = torch.cat([features, newline], dim=1)
+
+ return features.view(-1, dim)
+
+ def _pixel_values_to_embedding(
+ self,
+ pixel_values: torch.Tensor,
+ images_crop: torch.Tensor,
+ images_spatial_crop: torch.Tensor,
+ ) -> NestedTensors:
+ images_in_this_batch = []
+
+ for jdx in range(images_spatial_crop.size(0)):
+ patches = images_crop[jdx][0].to(torch.bfloat16)
+ image_ori = pixel_values[jdx]
+ crop_shape = images_spatial_crop[jdx][0]
+
+ global_features = self._encode_global_features(image_ori)
+ local_features = self._encode_local_features(patches, crop_shape)
+
+ if local_features is not None:
+ combined = torch.cat(
+ [local_features, global_features, self.view_seperator[None, :]],
+ dim=0,
+ )
+ else:
+ combined = torch.cat(
+ [global_features, self.view_seperator[None, :]], dim=0
+ )
+
+ images_in_this_batch.append(combined)
+
+ return images_in_this_batch
+
+ def _process_image_input(self, image_input) -> torch.Tensor:
+ pixel_values = image_input[0].to(torch.bfloat16)
+ images_crop = image_input[1]
+ images_spatial_crop = image_input[2].to(dtype=torch.long)
+
+ vision_features = self._pixel_values_to_embedding(
+ pixel_values=pixel_values,
+ images_crop=images_crop,
+ images_spatial_crop=images_spatial_crop,
+ )
+
+ return vision_features
+
+ def get_language_model(self) -> torch.nn.Module:
+ return self.language_model
+
+ def get_multimodal_embeddings(
+ self, **kwargs: object
+ ) -> MultiModalEmbeddings | None:
+ image_input = self._parse_and_validate_image_input(**kwargs)
+ if image_input is None:
+ return None
+ vision_embeddings = self._process_image_input(image_input)
+ return vision_embeddings
+
+ def forward(
+ self,
+ input_ids: torch.Tensor,
+ positions: torch.Tensor,
+ intermediate_tensors: IntermediateTensors | None = None,
+ inputs_embeds: torch.Tensor | None = None,
+ **kwargs: object,
+ ):
+ if intermediate_tensors is not None:
+ inputs_embeds = None
+
+ hidden_states = self.language_model(
+ input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds
+ )
+
+ return hidden_states
+
+ def compute_logits(
+ self,
+ hidden_states: torch.Tensor,
+ ) -> torch.Tensor | None:
+ return self.language_model.compute_logits(hidden_states)
+
+ def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
+ loader = AutoWeightsLoader(self)
+ autoloaded_weights = loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
+ return autoloaded_weights
diff --git a/vllm/model_executor/models/deepseek_vl2.py b/vllm/model_executor/models/deepseek_vl2.py
index 3fc8187278c83..ea10245a84ee1 100644
--- a/vllm/model_executor/models/deepseek_vl2.py
+++ b/vllm/model_executor/models/deepseek_vl2.py
@@ -101,9 +101,10 @@ class MlpProjector(nn.Module):
super().__init__()
self.cfg = cfg
+ self.projector_type = cfg.projector_type
assert not cfg.token_pooling, "Token pooling is not supported currently."
- if cfg.projector_type == "downsample_mlp_gelu":
+ if self.projector_type == "downsample_mlp_gelu":
mlp_depth = cfg.depth
mlp_ratio = cfg.mlp_ratio
modules = [
@@ -120,7 +121,8 @@ class MlpProjector(nn.Module):
modules.append(nn.GELU())
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
modules = nn.Sequential(*modules)
-
+ elif self.projector_type == "linear":
+ modules = nn.Linear(cfg.input_dim, cfg.n_embed)
else:
raise NotImplementedError(
f"Unsupported projector type: {cfg.projector_type}"
@@ -130,24 +132,25 @@ class MlpProjector(nn.Module):
def forward(self, x):
bs, hw, input_dim = x.shape
- h = w = int((hw) ** 0.5)
- """compute padding"""
- if h % self.cfg.downsample_ratio:
- pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
- else:
- pad = 0
- x = x.reshape(bs, h, w, input_dim)
- if pad > 0:
- x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
- """4 to 1 concat"""
- x = x.permute(0, 3, 1, 2) # B, C, H, W
- x = F.unfold(
- x,
- kernel_size=self.cfg.downsample_ratio,
- stride=self.cfg.downsample_ratio,
- padding=0,
- ) # B, C*4, HW // 4
- x = x.permute(0, 2, 1)
+ if self.projector_type == "downsample_mlp_gelu":
+ h = w = int((hw) ** 0.5)
+ """compute padding"""
+ if h % self.cfg.downsample_ratio:
+ pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
+ else:
+ pad = 0
+ x = x.reshape(bs, h, w, input_dim)
+ if pad > 0:
+ x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
+ """4 to 1 concat"""
+ x = x.permute(0, 3, 1, 2) # B, C, H, W
+ x = F.unfold(
+ x,
+ kernel_size=self.cfg.downsample_ratio,
+ stride=self.cfg.downsample_ratio,
+ padding=0,
+ ) # B, C*4, HW // 4
+ x = x.permute(0, 2, 1)
return self.layers(x)
diff --git a/vllm/model_executor/models/registry.py b/vllm/model_executor/models/registry.py
index da1606a7568dd..617854c8548fc 100644
--- a/vllm/model_executor/models/registry.py
+++ b/vllm/model_executor/models/registry.py
@@ -258,6 +258,7 @@ _MULTIMODAL_MODELS = {
"Cohere2VisionForConditionalGeneration",
),
"DeepseekVLV2ForCausalLM": ("deepseek_vl2", "DeepseekVLV2ForCausalLM"),
+ "DeepseekOCRForCausalLM": ("deepseek_ocr", "DeepseekOCRForCausalLM"),
"DotsOCRForCausalLM": ("dots_ocr", "DotsOCRForCausalLM"),
"Ernie4_5_VLMoeForConditionalGeneration": (
"ernie45_vl",
diff --git a/vllm/transformers_utils/chat_templates/registry.py b/vllm/transformers_utils/chat_templates/registry.py
index afeac2335dc77..dbb4ffb675b8b 100644
--- a/vllm/transformers_utils/chat_templates/registry.py
+++ b/vllm/transformers_utils/chat_templates/registry.py
@@ -34,6 +34,7 @@ _MODEL_TYPE_TO_CHAT_TEMPLATE_FALLBACK: dict[str, ChatTemplatePath] = {
"clip": CHAT_TEMPLATES_DIR / "template_basic.jinja",
"chameleon": CHAT_TEMPLATES_DIR / "template_basic.jinja",
"deepseek_vl_v2": CHAT_TEMPLATES_DIR / "template_deepseek_vl2.jinja",
+ "deepseek_ocr": CHAT_TEMPLATES_DIR / "template_deepseek_ocr.jinja",
"fuyu": CHAT_TEMPLATES_DIR / "template_fuyu.jinja",
"minicpmv": _get_minicpmv_chat_template_fallback,
"paligemma": CHAT_TEMPLATES_DIR / "template_basic.jinja",
diff --git a/vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja b/vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja
new file mode 100644
index 0000000000000..287abe3586425
--- /dev/null
+++ b/vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja
@@ -0,0 +1,14 @@
+{%- if messages[0]['role'] == 'system' -%}
+ {%- set system_message = messages[0]['content'] -%}
+ {%- set messages = messages[1:] -%}
+{%- else -%}
+ {% set system_message = '' -%}
+{%- endif -%}
+
+{{ bos_token + system_message }}
+{%- for message in messages -%}
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
+ {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
+ {%- endif -%}
+ {{ message['content'] }}
+{%- endfor -%}
diff --git a/vllm/transformers_utils/processors/deepseek_ocr.py b/vllm/transformers_utils/processors/deepseek_ocr.py
new file mode 100644
index 0000000000000..99f2df3342e02
--- /dev/null
+++ b/vllm/transformers_utils/processors/deepseek_ocr.py
@@ -0,0 +1,442 @@
+# SPDX-License-Identifier: Apache-2.0
+# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
+# adapted from https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek-OCR-master/DeepSeek-OCR-vllm/process/image_process.py
+import math
+
+import torch
+import torchvision.transforms as T
+from PIL import Image, ImageOps
+from transformers import AutoProcessor, BatchFeature, LlamaTokenizerFast
+from transformers.processing_utils import ProcessorMixin
+
+# TODO(Isotr0py): change modes for variants
+# see: https://github.com/deepseek-ai/DeepSeek-OCR/blob/8cf003d38821fa1b19c73da3bd1b0dc262ea8136/DeepSeek-OCR-master/DeepSeek-OCR-vllm/config.py#L1-L6
+# Tiny: base_size = 512, image_size = 512, crop_mode = False
+# Small: base_size = 640, image_size = 640, crop_mode = False
+# Base: base_size = 1024, image_size = 1024, crop_mode = False
+# Large: base_size = 1280, image_size = 1280, crop_mode = False
+# Gundam: base_size = 1024, image_size = 640, crop_mode = True
+BASE_SIZE = 1024
+IMAGE_SIZE = 640
+CROP_MODE = True
+
+# TODO(Isotr0py): Expose as mm_kwargs
+MIN_CROPS = 2
+MAX_CROPS = 6 # max:9; If your GPU memory is small, it is recommended to set it to 6.
+
+
+def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
+ best_ratio_diff = float("inf")
+ best_ratio = (1, 1)
+ area = width * height
+ for ratio in target_ratios:
+ target_aspect_ratio = ratio[0] / ratio[1]
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
+ if ratio_diff < best_ratio_diff:
+ best_ratio_diff = ratio_diff
+ best_ratio = ratio
+ elif ratio_diff == best_ratio_diff:
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
+ best_ratio = ratio
+ return best_ratio
+
+
+def calculate_aspect_ratios(
+ min_num: int = MIN_CROPS, max_num: int = MAX_CROPS
+) -> list[tuple[int, int]]:
+ target_ratios: set[tuple[int, int]] = set(
+ (i, j)
+ for n in range(min_num, max_num + 1)
+ for i in range(1, n + 1)
+ for j in range(1, n + 1)
+ if i * j <= max_num and i * j >= min_num
+ )
+ sorted_target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
+ return sorted_target_ratios
+
+
+def count_tiles(
+ orig_width,
+ orig_height,
+ min_num=MIN_CROPS,
+ max_num=MAX_CROPS,
+ image_size=640,
+ use_thumbnail=False,
+):
+ aspect_ratio = orig_width / orig_height
+
+ # calculate the existing image aspect ratio
+ target_ratios = calculate_aspect_ratios(min_num, max_num)
+
+ # find the closest aspect ratio to the target
+ target_aspect_ratio = find_closest_aspect_ratio(
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size
+ )
+
+ return target_aspect_ratio
+
+
+def dynamic_preprocess(
+ image, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False
+):
+ orig_width, orig_height = image.size
+ aspect_ratio = orig_width / orig_height
+
+ # calculate the existing image aspect ratio
+ target_ratios = calculate_aspect_ratios(min_num, max_num)
+
+ # find the closest aspect ratio to the target
+ target_aspect_ratio = find_closest_aspect_ratio(
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size
+ )
+
+ # calculate the target width and height
+ target_width = image_size * target_aspect_ratio[0]
+ target_height = image_size * target_aspect_ratio[1]
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
+
+ # resize the image
+ resized_img = image.resize((target_width, target_height))
+ processed_images = []
+ for i in range(blocks):
+ box = (
+ (i % (target_width // image_size)) * image_size,
+ (i // (target_width // image_size)) * image_size,
+ ((i % (target_width // image_size)) + 1) * image_size,
+ ((i // (target_width // image_size)) + 1) * image_size,
+ )
+ # split the image
+ split_img = resized_img.crop(box)
+ processed_images.append(split_img)
+ assert len(processed_images) == blocks
+ if use_thumbnail and len(processed_images) != 1:
+ thumbnail_img = image.resize((image_size, image_size))
+ processed_images.append(thumbnail_img)
+ return processed_images, target_aspect_ratio
+
+
+class ImageTransform:
+ def __init__(
+ self,
+ mean: tuple[float, float, float] = (0.5, 0.5, 0.5),
+ std: tuple[float, float, float] = (0.5, 0.5, 0.5),
+ normalize: bool = True,
+ ):
+ self.mean = mean
+ self.std = std
+ self.normalize = normalize
+
+ transform_pipelines = [T.ToTensor()]
+
+ if normalize:
+ transform_pipelines.append(T.Normalize(mean, std))
+
+ self.transform = T.Compose(transform_pipelines)
+
+ def __call__(self, pil_img: Image.Image):
+ x = self.transform(pil_img)
+ return x
+
+
+class DeepseekOCRProcessor(ProcessorMixin):
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
+ attributes = ["tokenizer"]
+
+ def __init__(
+ self,
+ tokenizer: LlamaTokenizerFast,
+ patch_size: int = 16,
+ downsample_ratio: int = 4,
+ image_mean: tuple[float, float, float] = (0.5, 0.5, 0.5),
+ image_std: tuple[float, float, float] = (0.5, 0.5, 0.5),
+ normalize: bool = True,
+ image_token: str = "",
+ pad_token: str = "<|▁pad▁|>",
+ add_special_token: bool = False,
+ sft_format: str = "deepseek",
+ mask_prompt: bool = True,
+ ignore_id: int = -100,
+ **kwargs,
+ ):
+ self.image_size = IMAGE_SIZE
+ self.base_size = BASE_SIZE
+ self.patch_size = 16
+ self.image_mean = image_mean
+ self.image_std = image_std
+ self.normalize = normalize
+ self.downsample_ratio = 4
+
+ self.image_transform = ImageTransform(
+ mean=image_mean, std=image_std, normalize=normalize
+ )
+
+ self.tokenizer = tokenizer
+ self.tokenizer.padding_side = "left" # must set this,padding side with make a difference in batch inference # noqa: E501
+
+ # add the pad_token as special token to use 'tokenizer.pad_token'
+ # and 'tokenizer.pad_token_id'
+ if self.tokenizer.pad_token is None:
+ self.tokenizer.add_special_tokens({"pad_token": pad_token})
+
+ # add image token
+ self.image_token_id = self.tokenizer.vocab.get(image_token)
+ self.image_token = image_token
+ self.pad_token = pad_token
+ self.add_special_token = add_special_token
+ self.sft_format = sft_format
+ self.mask_prompt = mask_prompt
+ self.ignore_id = ignore_id
+
+ super().__init__(
+ tokenizer,
+ **kwargs,
+ )
+
+ @property
+ def bos_id(self):
+ return self.tokenizer.bos_token_id
+
+ @property
+ def eos_id(self):
+ return self.tokenizer.eos_token_id
+
+ @property
+ def pad_id(self):
+ return self.tokenizer.pad_token_id
+
+ def encode(self, text: str, bos: bool = True, eos: bool = False):
+ t = self.tokenizer.encode(text, add_special_tokens=False)
+ if bos:
+ t = [self.bos_id] + t
+ if eos:
+ t = t + [self.eos_id]
+ return t
+
+ def decode(self, t: list[int], **kwargs) -> str:
+ return self.tokenizer.decode(t, **kwargs)
+
+ def process_one(
+ self,
+ prompt: str,
+ images: list[Image.Image],
+ crop_mode: bool = CROP_MODE,
+ ):
+ """
+
+ Args:
+ prompt (str): the formatted prompt;
+ images (List[ImageType]): the list of images;
+ crop_mode (bool): if True, then crop the image;
+
+ Returns:
+ outputs (BaseProcessorOutput): the output of the processor,
+ - input_ids (torch.LongTensor): [N + image tokens]
+ - target_ids (torch.LongTensor): [N + image tokens]
+ - pixel_values (torch.FloatTensor): [n_patches, 3, H, W]
+ - image_id (int): the id of the image token
+ - num_image_tokens (List[int]): the number of image tokens
+ """
+
+ assert prompt is not None and images is not None, (
+ "prompt and images must be used at the same time."
+ )
+
+ sft_format = prompt
+
+ (
+ input_ids,
+ pixel_values,
+ images_crop,
+ images_seq_mask,
+ images_spatial_crop,
+ num_image_tokens,
+ _,
+ ) = self.tokenize_with_images(
+ conversation=sft_format,
+ images=images,
+ bos=True,
+ eos=True,
+ cropping=crop_mode,
+ )
+
+ prepare = BatchFeature(
+ data=dict(
+ input_ids=input_ids,
+ pixel_values=pixel_values,
+ images_crop=images_crop,
+ images_seq_mask=images_seq_mask,
+ images_spatial_crop=images_spatial_crop,
+ num_image_tokens=num_image_tokens,
+ ),
+ tensor_type="pt",
+ )
+ return prepare
+
+ def __call__(
+ self,
+ *,
+ prompt: str,
+ images: list[Image.Image],
+ crop_mode: bool = CROP_MODE,
+ **kwargs,
+ ):
+ prepare = self.process_one(
+ prompt=prompt,
+ images=images,
+ crop_mode=crop_mode,
+ )
+
+ return prepare
+
+ def tokenize_with_images(
+ self,
+ conversation: str,
+ images: list[Image.Image],
+ bos: bool = True,
+ eos: bool = True,
+ cropping: bool = True,
+ ):
+ """Tokenize text with tags."""
+
+ assert conversation.count(self.image_token) == len(images)
+ text_splits = conversation.split(self.image_token)
+ images_list, images_crop_list, images_seq_mask, images_spatial_crop = (
+ [],
+ [],
+ [],
+ [],
+ )
+ image_shapes = []
+ num_image_tokens = []
+ tokenized_str = []
+ for text_sep, image in zip(text_splits, images):
+ tokenized_sep = self.encode(text_sep, bos=False, eos=False)
+ tokenized_str += tokenized_sep
+ images_seq_mask += [False] * len(tokenized_sep)
+
+ image_shapes.append(image.size)
+
+ images_crop_raw = []
+ if image.size[0] <= 640 and image.size[1] <= 640:
+ crop_ratio = [1, 1]
+ elif cropping:
+ images_crop_raw, crop_ratio = dynamic_preprocess(
+ image, image_size=IMAGE_SIZE
+ )
+ else:
+ crop_ratio = [1, 1]
+
+ if self.image_size <= 640 and not cropping:
+ image = image.resize((self.image_size, self.image_size))
+
+ global_view = ImageOps.pad(
+ image,
+ (self.base_size, self.base_size),
+ color=tuple(int(x * 255) for x in self.image_transform.mean),
+ )
+ images_list.append(self.image_transform(global_view))
+
+ num_width_tiles, num_height_tiles = crop_ratio
+ images_spatial_crop.append([num_width_tiles, num_height_tiles])
+
+ if num_width_tiles > 1 or num_height_tiles > 1:
+ for cropped_image in images_crop_raw:
+ images_crop_list.append(self.image_transform(cropped_image))
+
+ num_queries = math.ceil(
+ (self.image_size // self.patch_size) / self.downsample_ratio
+ )
+ num_queries_base = math.ceil(
+ (self.base_size // self.patch_size) / self.downsample_ratio
+ )
+
+ tokenized_image = (
+ [self.image_token_id] * num_queries_base + [self.image_token_id]
+ ) * num_queries_base
+ tokenized_image += [self.image_token_id]
+ if num_width_tiles > 1 or num_height_tiles > 1:
+ local_row = [self.image_token_id] * (num_queries * num_width_tiles + 1)
+ tokenized_image += local_row * (num_queries * num_height_tiles)
+ tokenized_str += tokenized_image
+ images_seq_mask += [True] * len(tokenized_image)
+ num_image_tokens.append(len(tokenized_image))
+
+ """process the last text split"""
+ tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
+ tokenized_str += tokenized_sep
+ images_seq_mask += [False] * len(tokenized_sep)
+
+ """add the bos and eos tokens"""
+ if bos:
+ tokenized_str = [self.bos_id] + tokenized_str
+ images_seq_mask = [False] + images_seq_mask
+ if eos:
+ tokenized_str = tokenized_str + [self.eos_id]
+ images_seq_mask = images_seq_mask + [False]
+
+ assert len(tokenized_str) == len(images_seq_mask), (
+ f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} "
+ f"is not equal to images_seq_mask's length {len(images_seq_mask)}."
+ )
+
+ masked_tokenized_str = []
+ for token_index in tokenized_str:
+ if token_index != self.image_token_id:
+ masked_tokenized_str.append(token_index)
+ else:
+ masked_tokenized_str.append(self.ignore_id)
+
+ assert (
+ len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str)
+ ), (
+ f"tokenized_str's length {len(tokenized_str)}, "
+ f"input_ids' length {len(masked_tokenized_str)}, "
+ f"images_seq_mask's length {len(images_seq_mask)}, are not equal."
+ )
+
+ input_ids = torch.LongTensor(tokenized_str)
+ target_ids = torch.LongTensor(masked_tokenized_str)
+ images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
+
+ # set input_ids < 0 | input_ids == self.image_token_id as ignore_id
+ target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = (
+ self.ignore_id
+ )
+ input_ids[input_ids < 0] = self.pad_id
+
+ # Remove the ending eos token
+ assert input_ids[-1] == self.eos_id
+ input_ids = input_ids[:-1]
+ target_ids = target_ids[:-1]
+ images_seq_mask = images_seq_mask[:-1]
+
+ if len(images_list) == 0:
+ pixel_values = torch.zeros((1, 3, self.base_size, self.base_size))
+ images_spatial_crop = torch.zeros((1, 1), dtype=torch.long)
+ images_crop = torch.zeros(
+ (1, 3, self.image_size, self.image_size)
+ ).unsqueeze(0)
+ else:
+ pixel_values = torch.stack(images_list, dim=0)
+ images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
+ if images_crop_list:
+ images_crop = torch.stack(images_crop_list, dim=0).unsqueeze(0)
+ else:
+ images_crop = torch.zeros(
+ (1, 3, self.image_size, self.image_size)
+ ).unsqueeze(0)
+
+ input_ids = input_ids.unsqueeze(0)
+
+ return (
+ input_ids,
+ pixel_values,
+ images_crop,
+ images_seq_mask,
+ images_spatial_crop,
+ num_image_tokens,
+ image_shapes,
+ )
+
+
+AutoProcessor.register("DeepseekOCRProcessor", DeepseekOCRProcessor)