mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 02:54:57 +08:00
[CI/Build][Intel] Enable performance benchmarks for Intel Gaudi 3 (#26919)
Signed-off-by: jakub-sochacki <jakub.sochacki@wp.pl>
This commit is contained in:
parent
d5d2a0fe74
commit
697f507a8e
@ -7,7 +7,7 @@ vLLM also maintains a continuous performance benchmark under [perf.vllm.ai](http
|
|||||||
|
|
||||||
## Performance benchmark quick overview
|
## Performance benchmark quick overview
|
||||||
|
|
||||||
**Benchmarking Coverage**: latency, throughput and fix-qps serving on B200, A100, H100 and Intel® Xeon® Processors, with different models.
|
**Benchmarking Coverage**: latency, throughput and fix-qps serving on B200, A100, H100, Intel® Xeon® Processors and Intel® Gaudi® 3 Accelerators with different models.
|
||||||
|
|
||||||
**Benchmarking Duration**: about 1hr.
|
**Benchmarking Duration**: about 1hr.
|
||||||
|
|
||||||
@ -34,6 +34,7 @@ Runtime environment variables:
|
|||||||
|
|
||||||
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
|
See [performance-benchmarks-descriptions.md](performance-benchmarks-descriptions.md) for detailed descriptions, and use `tests/latency-tests.json`, `tests/throughput-tests.json`, `tests/serving-tests.json` to configure the test cases.
|
||||||
> NOTE: For Intel® Xeon® Processors, use `tests/latency-tests-cpu.json`, `tests/throughput-tests-cpu.json`, `tests/serving-tests-cpu.json` instead.
|
> NOTE: For Intel® Xeon® Processors, use `tests/latency-tests-cpu.json`, `tests/throughput-tests-cpu.json`, `tests/serving-tests-cpu.json` instead.
|
||||||
|
For Intel® Gaudi® 3 Accelerators, use `tests/latency-tests-hpu.json`, `tests/throughput-tests-hpu.json`, `tests/serving-tests-hpu.json` instead.
|
||||||
>
|
>
|
||||||
### Latency test
|
### Latency test
|
||||||
|
|
||||||
|
|||||||
@ -5,7 +5,7 @@
|
|||||||
- Input length: 32 tokens.
|
- Input length: 32 tokens.
|
||||||
- Output length: 128 tokens.
|
- Output length: 128 tokens.
|
||||||
- Batch size: fixed (8).
|
- Batch size: fixed (8).
|
||||||
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
|
- GPU/HPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
|
||||||
- CPU Models: llama-3.1 8B.
|
- CPU Models: llama-3.1 8B.
|
||||||
- Evaluation metrics: end-to-end latency (mean, median, p99).
|
- Evaluation metrics: end-to-end latency (mean, median, p99).
|
||||||
|
|
||||||
@ -16,7 +16,7 @@
|
|||||||
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
|
- Input length: randomly sample 200 prompts from ShareGPT dataset (with fixed random seed).
|
||||||
- Output length: the corresponding output length of these 200 prompts.
|
- Output length: the corresponding output length of these 200 prompts.
|
||||||
- Batch size: dynamically determined by vllm to achieve maximum throughput.
|
- Batch size: dynamically determined by vllm to achieve maximum throughput.
|
||||||
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
|
- GPU/HPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
|
||||||
- CPU Models: llama-3.1 8B.
|
- CPU Models: llama-3.1 8B.
|
||||||
- Evaluation metrics: throughput.
|
- Evaluation metrics: throughput.
|
||||||
|
|
||||||
@ -28,7 +28,7 @@
|
|||||||
- Output length: the corresponding output length of these 200 prompts.
|
- Output length: the corresponding output length of these 200 prompts.
|
||||||
- Batch size: dynamically determined by vllm and the arrival pattern of the requests.
|
- Batch size: dynamically determined by vllm and the arrival pattern of the requests.
|
||||||
- **Average QPS (query per second)**: 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
|
- **Average QPS (query per second)**: 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
|
||||||
- GPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
|
- GPU/HPU Models: llama-3.1 8B, llama-3 70B, mixtral 8x7B.
|
||||||
- We also added a speculative decoding test for llama-3 70B on GPU, under QPS 2
|
- We also added a speculative decoding test for llama-3 70B on GPU, under QPS 2
|
||||||
- CPU Models: llama-3.1 8B.
|
- CPU Models: llama-3.1 8B.
|
||||||
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).
|
- Evaluation metrics: throughput, TTFT (time to the first token, with mean, median and p99), ITL (inter-token latency, with mean, median and p99).
|
||||||
|
|||||||
@ -15,6 +15,8 @@ check_gpus() {
|
|||||||
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
declare -g gpu_count=$(nvidia-smi --list-gpus | wc -l)
|
||||||
elif command -v amd-smi; then
|
elif command -v amd-smi; then
|
||||||
declare -g gpu_count=$(amd-smi list | grep 'GPU' | wc -l)
|
declare -g gpu_count=$(amd-smi list | grep 'GPU' | wc -l)
|
||||||
|
elif command -v hl-smi; then
|
||||||
|
declare -g gpu_count=$(hl-smi --list | grep -i "Module ID" | wc -l)
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [[ $gpu_count -gt 0 ]]; then
|
if [[ $gpu_count -gt 0 ]]; then
|
||||||
@ -23,10 +25,16 @@ check_gpus() {
|
|||||||
echo "Need at least 1 GPU to run benchmarking."
|
echo "Need at least 1 GPU to run benchmarking."
|
||||||
exit 1
|
exit 1
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
declare -g arch_suffix=''
|
||||||
|
|
||||||
if command -v nvidia-smi; then
|
if command -v nvidia-smi; then
|
||||||
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
|
declare -g gpu_type=$(nvidia-smi --query-gpu=name --format=csv,noheader | awk '{print $2}')
|
||||||
elif command -v amd-smi; then
|
elif command -v amd-smi; then
|
||||||
declare -g gpu_type=$(amd-smi static -g 0 -a | grep 'MARKET_NAME' | awk '{print $2}')
|
declare -g gpu_type=$(amd-smi static -g 0 -a | grep 'MARKET_NAME' | awk '{print $2}')
|
||||||
|
elif command -v hl-smi; then
|
||||||
|
declare -g gpu_type=$(hl-smi -q | grep "Product Name" | head -n 1 | awk -F ':' '{print $2}' | sed 's/^ *//')
|
||||||
|
arch_suffix='-hpu'
|
||||||
fi
|
fi
|
||||||
echo "GPU type is $gpu_type"
|
echo "GPU type is $gpu_type"
|
||||||
}
|
}
|
||||||
@ -138,6 +146,10 @@ kill_gpu_processes() {
|
|||||||
while [ "$(amd-smi metric -g 0 | grep 'USED_VRAM' | awk '{print $2}')" -ge 1000 ]; do
|
while [ "$(amd-smi metric -g 0 | grep 'USED_VRAM' | awk '{print $2}')" -ge 1000 ]; do
|
||||||
sleep 1
|
sleep 1
|
||||||
done
|
done
|
||||||
|
elif command -v hl-smi; then
|
||||||
|
while [ "$(hl-smi -q | grep "Used" | head -n 1 | awk '{print $3}')" -ge 1000 ]; do
|
||||||
|
sleep 1
|
||||||
|
done
|
||||||
fi
|
fi
|
||||||
|
|
||||||
# remove vllm config file
|
# remove vllm config file
|
||||||
@ -451,6 +463,7 @@ main() {
|
|||||||
ARCH='-cpu'
|
ARCH='-cpu'
|
||||||
else
|
else
|
||||||
check_gpus
|
check_gpus
|
||||||
|
ARCH="$arch_suffix"
|
||||||
fi
|
fi
|
||||||
check_hf_token
|
check_hf_token
|
||||||
|
|
||||||
|
|||||||
@ -0,0 +1,55 @@
|
|||||||
|
[
|
||||||
|
{
|
||||||
|
"test_name": "latency_llama8B_tp1",
|
||||||
|
"environment_variables": {
|
||||||
|
"PT_HPU_LAZY_MODE": 1,
|
||||||
|
"VLLM_CONTIGUOUS_PA": 1,
|
||||||
|
"VLLM_DEFRAG": 1
|
||||||
|
},
|
||||||
|
"parameters": {
|
||||||
|
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||||
|
"tensor_parallel_size": 1,
|
||||||
|
"load_format": "dummy",
|
||||||
|
"num-iters-warmup": 5,
|
||||||
|
"num-iters": 15,
|
||||||
|
"max-model-len": 256,
|
||||||
|
"async-scheduling": ""
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"test_name": "latency_llama70B_tp4",
|
||||||
|
"environment_variables": {
|
||||||
|
"PT_HPU_LAZY_MODE": 1,
|
||||||
|
"PT_HPU_ENABLE_LAZY_COLLECTIVES": 1,
|
||||||
|
"VLLM_CONTIGUOUS_PA": 1,
|
||||||
|
"VLLM_DEFRAG": 1
|
||||||
|
},
|
||||||
|
"parameters": {
|
||||||
|
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||||
|
"tensor_parallel_size": 4,
|
||||||
|
"load_format": "dummy",
|
||||||
|
"num-iters-warmup": 5,
|
||||||
|
"num-iters": 15,
|
||||||
|
"max-model-len": 256,
|
||||||
|
"async-scheduling": ""
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"test_name": "latency_mixtral8x7B_tp2",
|
||||||
|
"environment_variables": {
|
||||||
|
"PT_HPU_LAZY_MODE": 1,
|
||||||
|
"PT_HPU_ENABLE_LAZY_COLLECTIVES": 1,
|
||||||
|
"VLLM_CONTIGUOUS_PA": 1,
|
||||||
|
"VLLM_DEFRAG": 1
|
||||||
|
},
|
||||||
|
"parameters": {
|
||||||
|
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||||
|
"tensor_parallel_size": 2,
|
||||||
|
"load_format": "dummy",
|
||||||
|
"num-iters-warmup": 5,
|
||||||
|
"num-iters": 15,
|
||||||
|
"max-model-len": 256,
|
||||||
|
"async-scheduling": ""
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
@ -0,0 +1,82 @@
|
|||||||
|
[
|
||||||
|
{
|
||||||
|
"test_name": "serving_llama8B_tp1_sharegpt",
|
||||||
|
"qps_list": [1, 4, 16, "inf"],
|
||||||
|
"server_environment_variables": {
|
||||||
|
"PT_HPU_LAZY_MODE": 1,
|
||||||
|
"VLLM_CONTIGUOUS_PA": 1,
|
||||||
|
"VLLM_DEFRAG": 1
|
||||||
|
},
|
||||||
|
"server_parameters": {
|
||||||
|
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||||
|
"tensor_parallel_size": 1,
|
||||||
|
"swap_space": 16,
|
||||||
|
"disable_log_stats": "",
|
||||||
|
"load_format": "dummy",
|
||||||
|
"max-model-len": 2048,
|
||||||
|
"max-num-seqs": 256,
|
||||||
|
"async-scheduling": ""
|
||||||
|
},
|
||||||
|
"client_parameters": {
|
||||||
|
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||||
|
"backend": "vllm",
|
||||||
|
"dataset_name": "sharegpt",
|
||||||
|
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||||
|
"num_prompts": 200
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"test_name": "serving_llama70B_tp4_sharegpt",
|
||||||
|
"qps_list": [1, 4, 16, "inf"],
|
||||||
|
"server_environment_variables": {
|
||||||
|
"PT_HPU_LAZY_MODE": 1,
|
||||||
|
"PT_HPU_ENABLE_LAZY_COLLECTIVES": 1,
|
||||||
|
"VLLM_CONTIGUOUS_PA": 1,
|
||||||
|
"VLLM_DEFRAG": 1
|
||||||
|
},
|
||||||
|
"server_parameters": {
|
||||||
|
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||||
|
"tensor_parallel_size": 4,
|
||||||
|
"swap_space": 16,
|
||||||
|
"disable_log_stats": "",
|
||||||
|
"load_format": "dummy",
|
||||||
|
"max-model-len": 2048,
|
||||||
|
"max-num-seqs": 256,
|
||||||
|
"async-scheduling": ""
|
||||||
|
},
|
||||||
|
"client_parameters": {
|
||||||
|
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||||
|
"backend": "vllm",
|
||||||
|
"dataset_name": "sharegpt",
|
||||||
|
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||||
|
"num_prompts": 200
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"test_name": "serving_mixtral8x7B_tp2_sharegpt",
|
||||||
|
"qps_list": [1, 4, 16, "inf"],
|
||||||
|
"server_environment_variables": {
|
||||||
|
"PT_HPU_LAZY_MODE": 1,
|
||||||
|
"PT_HPU_ENABLE_LAZY_COLLECTIVES": 1,
|
||||||
|
"VLLM_CONTIGUOUS_PA": 1,
|
||||||
|
"VLLM_DEFRAG": 1
|
||||||
|
},
|
||||||
|
"server_parameters": {
|
||||||
|
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||||
|
"tensor_parallel_size": 2,
|
||||||
|
"swap_space": 16,
|
||||||
|
"disable_log_stats": "",
|
||||||
|
"load_format": "dummy",
|
||||||
|
"max-model-len": 2048,
|
||||||
|
"max-num-seqs": 256,
|
||||||
|
"async-scheduling": ""
|
||||||
|
},
|
||||||
|
"client_parameters": {
|
||||||
|
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||||
|
"backend": "vllm",
|
||||||
|
"dataset_name": "sharegpt",
|
||||||
|
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||||
|
"num_prompts": 200
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
@ -0,0 +1,61 @@
|
|||||||
|
[
|
||||||
|
{
|
||||||
|
"test_name": "throughput_llama8B_tp1",
|
||||||
|
"environment_variables": {
|
||||||
|
"PT_HPU_LAZY_MODE": 1,
|
||||||
|
"VLLM_CONTIGUOUS_PA": 1,
|
||||||
|
"VLLM_DEFRAG": 1
|
||||||
|
},
|
||||||
|
"parameters": {
|
||||||
|
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
||||||
|
"tensor_parallel_size": 1,
|
||||||
|
"load_format": "dummy",
|
||||||
|
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||||
|
"num_prompts": 1000,
|
||||||
|
"backend": "vllm",
|
||||||
|
"max-model-len": 2048,
|
||||||
|
"max-num-seqs": 512,
|
||||||
|
"async-scheduling": ""
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"test_name": "throughput_llama70B_tp4",
|
||||||
|
"environment_variables": {
|
||||||
|
"PT_HPU_LAZY_MODE": 1,
|
||||||
|
"PT_HPU_ENABLE_LAZY_COLLECTIVES": 1,
|
||||||
|
"VLLM_CONTIGUOUS_PA": 1,
|
||||||
|
"VLLM_DEFRAG": 1
|
||||||
|
},
|
||||||
|
"parameters": {
|
||||||
|
"model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
||||||
|
"tensor_parallel_size": 4,
|
||||||
|
"load_format": "dummy",
|
||||||
|
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||||
|
"num_prompts": 1000,
|
||||||
|
"backend": "vllm",
|
||||||
|
"max-model-len": 2048,
|
||||||
|
"max-num-seqs": 512,
|
||||||
|
"async-scheduling": ""
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"test_name": "throughput_mixtral8x7B_tp2",
|
||||||
|
"environment_variables": {
|
||||||
|
"PT_HPU_LAZY_MODE": 1,
|
||||||
|
"PT_HPU_ENABLE_LAZY_COLLECTIVES": 1,
|
||||||
|
"VLLM_CONTIGUOUS_PA": 1,
|
||||||
|
"VLLM_DEFRAG": 1
|
||||||
|
},
|
||||||
|
"parameters": {
|
||||||
|
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||||
|
"tensor_parallel_size": 2,
|
||||||
|
"load_format": "dummy",
|
||||||
|
"dataset_path": "./ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||||
|
"num_prompts": 1000,
|
||||||
|
"backend": "vllm",
|
||||||
|
"max-model-len": 2048,
|
||||||
|
"max-num-seqs": 512,
|
||||||
|
"async-scheduling": ""
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
Loading…
x
Reference in New Issue
Block a user