diff --git a/vllm/model_executor/models/jais2.py b/vllm/model_executor/models/jais2.py index 01e75338a8ced..aacc4abd43e61 100644 --- a/vllm/model_executor/models/jais2.py +++ b/vllm/model_executor/models/jais2.py @@ -48,7 +48,6 @@ from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.vocab_parallel_embedding import ( - DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding, ) @@ -167,7 +166,6 @@ class Jais2Attention(nn.Module): self.rotary_emb = get_rope( self.head_dim, - rotary_dim=self.head_dim, max_position=max_position_embeddings, rope_parameters=getattr(config, "rope_parameters", None), is_neox_style=is_neox_style, @@ -304,17 +302,12 @@ class Jais2Model(nn.Module): config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config - lora_config = vllm_config.lora_config self.config = config self.quant_config = quant_config self.padding_idx = config.pad_token_id - lora_vocab = ( - (lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1)) - if lora_config - else 0 - ) - self.vocab_size = config.vocab_size + lora_vocab + + self.vocab_size = config.vocab_size self.org_vocab_size = config.vocab_size if get_pp_group().is_first_rank or ( config.tie_word_embeddings and get_pp_group().is_last_rank @@ -456,29 +449,15 @@ class Jais2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config - lora_config = vllm_config.lora_config self.config = config - self.lora_config = lora_config - self.model = self._init_model( vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model") ) if get_pp_group().is_last_rank: - self.unpadded_vocab_size = config.vocab_size - if lora_config: - self.unpadded_vocab_size += lora_config.lora_extra_vocab_size self.lm_head = ParallelLMHead( - self.unpadded_vocab_size, + config.vocab_size, config.hidden_size, - org_num_embeddings=config.vocab_size, - padding_size=( - DEFAULT_VOCAB_PADDING_SIZE - # We need bigger padding if using lora for kernel - # compatibility - if not lora_config - else lora_config.lora_vocab_padding_size - ), quant_config=quant_config, prefix=maybe_prefix(prefix, "lm_head"), ) @@ -487,7 +466,7 @@ class Jais2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP): logit_scale = getattr(config, "logit_scale", 1.0) self.logits_processor = LogitsProcessor( - self.unpadded_vocab_size, config.vocab_size, logit_scale + config.vocab_size, scale=logit_scale ) else: self.lm_head = PPMissingLayer()