diff --git a/vllm/model_executor/models/qwen2_5_omni_thinker.py b/vllm/model_executor/models/qwen2_5_omni_thinker.py index d05eb76cdf6f..e79428d17a70 100644 --- a/vllm/model_executor/models/qwen2_5_omni_thinker.py +++ b/vllm/model_executor/models/qwen2_5_omni_thinker.py @@ -41,6 +41,7 @@ from transformers.models.whisper import WhisperFeatureExtractor from vllm.config import VllmConfig from vllm.logger import init_logger from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding +from vllm.model_executor.models.module_mapping import MultiModelKeys from vllm.model_executor.models.qwen2_5_vl import ( Qwen2_5_VisionTransformer, Qwen2_5_VLImageEmbeddingInputs, Qwen2_5_VLImageInputs, Qwen2_5_VLImagePixelInputs, @@ -66,7 +67,8 @@ from vllm.sequence import IntermediateTensors from vllm.transformers_utils.tokenizer import decode_tokens, encode_tokens from vllm.utils.tensor_schema import TensorSchema, TensorShape -from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP +from .interfaces import (MultiModalEmbeddings, SupportsLoRA, + SupportsMultiModal, SupportsPP) from .utils import (AutoWeightsLoader, WeightsMapper, init_vllm_registered_model, maybe_prefix, merge_multimodal_embeddings) @@ -726,7 +728,7 @@ class Qwen2_5OmniConditionalGenerationMixin: dummy_inputs=Qwen2_5OmniThinkerDummyInputsBuilder, ) class Qwen2_5OmniThinkerForConditionalGeneration( - nn.Module, SupportsMultiModal, SupportsPP, + nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA, Qwen2_5OmniConditionalGenerationMixin): hf_to_vllm_mapper = WeightsMapper( orig_to_new_prefix={ @@ -734,6 +736,22 @@ class Qwen2_5OmniThinkerForConditionalGeneration( "thinker.model.": "language_model.model.", "thinker.": "", }) + packed_modules_mapping = { + "qkv_proj": [ + "q_proj", + "k_proj", + "v_proj", + ], + "attn.qkv": [ + "attn.q", + "attn.k", + "attn.v", + ], + "gate_up_proj": [ + "gate_proj", + "up_proj", + ], + } @classmethod def get_placeholder_str(cls, modality: str, i: int) -> Optional[str]: @@ -956,3 +974,12 @@ class Qwen2_5OmniThinkerForConditionalGeneration( mapper=self.hf_to_vllm_mapper) return loaded_weights + + def get_mm_mapping(self) -> MultiModelKeys: + """ + Get the module prefix in multimodal models + """ + return MultiModelKeys.from_string_field( + language_model="language_model", + connector="merger.", + tower_model=["visual.", "audio_tower."])