Granite 4.0 quark quantization support (#26944)

Signed-off-by: Xiao YU <Xiao.YU@xilinx.com>
Signed-off-by: Xiao Yu <xiao.yu.dc@outlook.com>
Co-authored-by: Xiao YU <Xiao.YU@xilinx.com>
This commit is contained in:
xiao-llm 2025-10-23 22:14:03 -04:00 committed by GitHub
parent f417746ad7
commit 70022ffc00
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -330,6 +330,7 @@ class GraniteMoeHybridModel(nn.Module):
lora_config = vllm_config.lora_config
self.config = config
self.quant_config = quant_config
lora_vocab = (
(lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1))
if lora_config
@ -405,6 +406,33 @@ class GraniteMoeHybridModel(nn.Module):
hidden_states = self.norm(hidden_states)
return hidden_states
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
# layers.0.block_sparse_moe.expert_0.input_linear.input_scale
ckpt_gate_proj_name = "gate_proj"
ckpt_down_proj_name = "down_proj"
ckpt_up_proj_name = "up_proj"
num_experts = self.config.num_local_experts
return [
# (param_name, weight_name, expert_id, shard_id)
(
"block_sparse_moe.experts.w13_"
if weight_name in [ckpt_gate_proj_name, ckpt_up_proj_name]
else "block_sparse_moe.experts.w2_",
f"block_sparse_moe.experts.{expert_id}.{weight_name}.",
expert_id,
shard_id,
)
for expert_id in range(num_experts)
for shard_id, weight_name in [
("w1", ckpt_gate_proj_name),
("w2", ckpt_down_proj_name),
("w3", ckpt_up_proj_name),
]
]
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
@ -414,6 +442,7 @@ class GraniteMoeHybridModel(nn.Module):
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
expert_params_mapping = self.get_expert_mapping()
def _load(n, p):
param = params_dict[n]
@ -435,10 +464,56 @@ class GraniteMoeHybridModel(nn.Module):
weight_loader(param, p, name, shard_id=shard_id, expert_id=expert_id)
loaded_params.add(n)
def _load_quant_expert(name, loaded_weight):
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name_mapped = name.replace(weight_name, param_name)
# Skip layers on other devices.
if is_pp_missing_parameter(name_mapped, self):
continue
param = params_dict[name_mapped]
weight_loader = param.weight_loader
success = False
if weight_loader is not None:
success = weight_loader(
param,
loaded_weight,
name_mapped,
shard_id=shard_id,
expert_id=expert_id,
return_success=True,
)
if success:
return name_mapped
return None
for n, p in weights:
if "A_log" in n:
n = n.replace("A_log", "A")
if self.quant_config is not None and (
scale_name := self.quant_config.get_cache_scale(n)
):
# Loading kv cache quantization scales
loaded_weight = p
loaded_weight = (
loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
)
_load(scale_name, loaded_weight)
loaded_params.add(scale_name)
continue
if _load_quant_expert(n, p):
continue
# Logic analogous to: https://github.com/vllm-project/vllm/blob/f49e5aff11c986ed4d45202b1716c5d74786efa9/vllm/model_executor/models/granitemoeshared.py#L215
# Mapping different experts' layout:
# from HF (input_linear, output_linear, router)