mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 08:04:58 +08:00
[Refactor] Introduce basic Renderer for completion-style request (#24010)
Signed-off-by: sfeng33 <4florafeng@gmail.com>
This commit is contained in:
parent
e919d6f549
commit
712b273f65
163
tests/entrypoints/test_renderer.py
Normal file
163
tests/entrypoints/test_renderer.py
Normal file
@ -0,0 +1,163 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm.entrypoints.renderer import CompletionRenderer
|
||||
|
||||
|
||||
@dataclass
|
||||
class MockModelConfig:
|
||||
max_model_len: int = 100
|
||||
encoder_config: Optional[dict] = None
|
||||
|
||||
|
||||
class MockTokenizerResult:
|
||||
|
||||
def __init__(self, input_ids):
|
||||
self.input_ids = input_ids
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_model_config():
|
||||
return MockModelConfig()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_tokenizer():
|
||||
tokenizer = MagicMock()
|
||||
return tokenizer
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_async_tokenizer():
|
||||
async_tokenizer = AsyncMock()
|
||||
return async_tokenizer
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def renderer(mock_model_config, mock_tokenizer):
|
||||
return CompletionRenderer(model_config=mock_model_config,
|
||||
tokenizer=mock_tokenizer,
|
||||
async_tokenizer_pool={})
|
||||
|
||||
|
||||
class TestRenderPrompt:
|
||||
"""Test Category A: Basic Functionality Tests"""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_token_input(self, renderer):
|
||||
tokens = [101, 7592, 2088]
|
||||
results = await renderer.render_prompt(prompt_or_prompts=tokens,
|
||||
max_length=100)
|
||||
|
||||
assert len(results) == 1
|
||||
assert results[0]["prompt_token_ids"] == tokens
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_token_list_input(self, renderer):
|
||||
token_lists = [[101, 7592, 2088], [102, 1234, 5678, 9012], [103, 4567]]
|
||||
results = await renderer.render_prompt(prompt_or_prompts=token_lists,
|
||||
max_length=100)
|
||||
|
||||
assert len(results) == 3
|
||||
assert results[0]["prompt_token_ids"] == [101, 7592, 2088]
|
||||
assert results[1]["prompt_token_ids"] == [102, 1234, 5678, 9012]
|
||||
assert results[2]["prompt_token_ids"] == [103, 4567]
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_text_input(self, renderer, mock_async_tokenizer):
|
||||
mock_async_tokenizer.return_value = MockTokenizerResult(
|
||||
[101, 7592, 2088])
|
||||
renderer.async_tokenizer_pool[
|
||||
renderer.tokenizer] = mock_async_tokenizer
|
||||
|
||||
results = await renderer.render_prompt(prompt_or_prompts="Hello world",
|
||||
max_length=100)
|
||||
|
||||
assert len(results) == 1
|
||||
assert results[0]["prompt_token_ids"] == [101, 7592, 2088]
|
||||
mock_async_tokenizer.assert_called_once()
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_text_list_input(self, renderer, mock_async_tokenizer):
|
||||
mock_async_tokenizer.return_value = MockTokenizerResult(
|
||||
[101, 7592, 2088])
|
||||
renderer.async_tokenizer_pool[
|
||||
renderer.tokenizer] = mock_async_tokenizer
|
||||
|
||||
text_list_input = ["Hello world", "How are you?", "Good morning"]
|
||||
results = await renderer.render_prompt(
|
||||
prompt_or_prompts=text_list_input, max_length=100)
|
||||
|
||||
assert len(results) == 3
|
||||
for result in results:
|
||||
assert result["prompt_token_ids"] == [101, 7592, 2088]
|
||||
assert mock_async_tokenizer.call_count == 3
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_no_truncation(self, renderer, mock_async_tokenizer):
|
||||
mock_async_tokenizer.return_value = MockTokenizerResult(
|
||||
[101, 7592, 2088])
|
||||
renderer.async_tokenizer_pool[
|
||||
renderer.tokenizer] = mock_async_tokenizer
|
||||
|
||||
results = await renderer.render_prompt(prompt_or_prompts="Hello world",
|
||||
max_length=100)
|
||||
|
||||
assert len(results) == 1
|
||||
call_args = mock_async_tokenizer.call_args
|
||||
assert "truncation" not in call_args.kwargs or call_args.kwargs[
|
||||
"truncation"] is False
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_truncation_positive(self, renderer, mock_async_tokenizer):
|
||||
mock_async_tokenizer.return_value = MockTokenizerResult(
|
||||
[101, 7592, 2088]) # Truncated
|
||||
renderer.async_tokenizer_pool[
|
||||
renderer.tokenizer] = mock_async_tokenizer
|
||||
|
||||
results = await renderer.render_prompt(prompt_or_prompts="Hello world",
|
||||
max_length=100,
|
||||
truncate_prompt_tokens=50)
|
||||
|
||||
assert len(results) == 1
|
||||
call_args = mock_async_tokenizer.call_args
|
||||
assert call_args.kwargs["truncation"] is True
|
||||
assert call_args.kwargs["max_length"] == 50
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_token_truncation_last_elements(self, renderer):
|
||||
# Test that token truncation keeps the last N elements
|
||||
long_tokens = [100, 101, 102, 103, 104, 105, 106, 107, 108,
|
||||
109] # 10 tokens
|
||||
results = await renderer.render_prompt(prompt_or_prompts=long_tokens,
|
||||
max_length=100,
|
||||
truncate_prompt_tokens=5)
|
||||
|
||||
assert len(results) == 1
|
||||
# Should keep the last 5 tokens: [105, 106, 107, 108, 109]
|
||||
assert results[0]["prompt_token_ids"] == [105, 106, 107, 108, 109]
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_max_length_exceeded(self, renderer):
|
||||
long_tokens = list(range(150)) # Exceeds max_model_len=100
|
||||
|
||||
with pytest.raises(ValueError, match="maximum context length"):
|
||||
await renderer.render_prompt(prompt_or_prompts=long_tokens,
|
||||
max_length=100)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_no_tokenizer_for_text(self, mock_model_config):
|
||||
renderer_no_tokenizer = CompletionRenderer(
|
||||
model_config=mock_model_config,
|
||||
tokenizer=None,
|
||||
async_tokenizer_pool={})
|
||||
|
||||
with pytest.raises(ValueError, match="No tokenizer available"):
|
||||
await renderer_no_tokenizer.render_prompt(
|
||||
prompt_or_prompts="Hello world", max_length=100)
|
||||
@ -62,8 +62,10 @@ from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
|
||||
TranslationRequest)
|
||||
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
||||
from vllm.entrypoints.openai.tool_parsers import ToolParser
|
||||
from vllm.entrypoints.renderer import BaseRenderer, CompletionRenderer
|
||||
# yapf: enable
|
||||
from vllm.inputs.data import EmbedsPrompt as EngineEmbedsPrompt
|
||||
from vllm.inputs.data import PromptType
|
||||
from vllm.inputs.data import TokensPrompt as EngineTokensPrompt
|
||||
from vllm.inputs.parse import parse_and_batch_prompt
|
||||
from vllm.logger import init_logger
|
||||
@ -243,6 +245,16 @@ class OpenAIServing:
|
||||
AsyncMicrobatchTokenizer] = {}
|
||||
self.log_error_stack = log_error_stack
|
||||
|
||||
def _get_renderer(self, tokenizer: Optional[AnyTokenizer]) -> BaseRenderer:
|
||||
"""
|
||||
Get a Renderer instance with the provided tokenizer.
|
||||
Uses shared async tokenizer pool for efficiency.
|
||||
"""
|
||||
return CompletionRenderer(
|
||||
model_config=self.model_config,
|
||||
tokenizer=tokenizer,
|
||||
async_tokenizer_pool=self._async_tokenizer_pool)
|
||||
|
||||
def _get_async_tokenizer(self, tokenizer) -> AsyncMicrobatchTokenizer:
|
||||
"""
|
||||
Return (and cache) an `AsyncMicrobatchTokenizer` bound to the
|
||||
@ -1098,7 +1110,7 @@ class OpenAIServing:
|
||||
def _log_inputs(
|
||||
self,
|
||||
request_id: str,
|
||||
inputs: RequestPrompt,
|
||||
inputs: Union[RequestPrompt, PromptType],
|
||||
params: Optional[Union[SamplingParams, PoolingParams,
|
||||
BeamSearchParams]],
|
||||
lora_request: Optional[LoRARequest],
|
||||
@ -1110,11 +1122,9 @@ class OpenAIServing:
|
||||
prompt = inputs
|
||||
elif isinstance(inputs, list):
|
||||
prompt_token_ids = inputs
|
||||
elif "prompt_embeds" in inputs:
|
||||
prompt_embeds = inputs.get("prompt_embeds")
|
||||
else:
|
||||
prompt = inputs["prompt"]
|
||||
prompt_token_ids = inputs["prompt_token_ids"]
|
||||
prompt = getattr(inputs, 'prompt', None)
|
||||
prompt_token_ids = getattr(inputs, 'prompt_token_ids', None)
|
||||
|
||||
self.request_logger.log_inputs(
|
||||
request_id,
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
import asyncio
|
||||
import base64
|
||||
import time
|
||||
from collections.abc import AsyncGenerator, Sequence
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Final, Literal, Optional, Union, cast
|
||||
|
||||
import jinja2
|
||||
@ -26,7 +26,7 @@ from vllm.entrypoints.openai.protocol import (ErrorResponse,
|
||||
PoolingRequest, PoolingResponse,
|
||||
PoolingResponseData, UsageInfo)
|
||||
# yapf: enable
|
||||
from vllm.entrypoints.openai.serving_engine import OpenAIServing, RequestPrompt
|
||||
from vllm.entrypoints.openai.serving_engine import OpenAIServing
|
||||
from vllm.entrypoints.openai.serving_models import OpenAIServingModels
|
||||
from vllm.entrypoints.utils import _validate_truncation_size
|
||||
from vllm.logger import init_logger
|
||||
@ -104,6 +104,7 @@ class OpenAIServingPooling(OpenAIServing):
|
||||
else:
|
||||
tokenizer = await self.engine_client.get_tokenizer(lora_request
|
||||
)
|
||||
renderer = self._get_renderer(tokenizer)
|
||||
|
||||
if getattr(request, "dimensions", None) is not None:
|
||||
return self.create_error_response(
|
||||
@ -126,14 +127,11 @@ class OpenAIServingPooling(OpenAIServing):
|
||||
|
||||
engine_prompts = await self.io_processor.pre_process_async(
|
||||
prompt=validated_prompt, request_id=request_id)
|
||||
request_prompts: Sequence[RequestPrompt] = [
|
||||
""
|
||||
] * len(engine_prompts)
|
||||
|
||||
elif isinstance(request, PoolingChatRequest):
|
||||
(
|
||||
_,
|
||||
request_prompts,
|
||||
_,
|
||||
engine_prompts,
|
||||
) = await self._preprocess_chat(
|
||||
request,
|
||||
@ -149,13 +147,13 @@ class OpenAIServingPooling(OpenAIServing):
|
||||
add_special_tokens=request.add_special_tokens,
|
||||
)
|
||||
elif isinstance(request, PoolingCompletionRequest):
|
||||
(request_prompts,
|
||||
engine_prompts) = await self._preprocess_completion(
|
||||
request,
|
||||
tokenizer,
|
||||
request.input,
|
||||
add_special_tokens=request.add_special_tokens,
|
||||
)
|
||||
engine_prompts = await renderer.render_prompt(
|
||||
prompt_or_prompts=request.input,
|
||||
max_length=self.max_model_len,
|
||||
truncate_prompt_tokens=truncate_prompt_tokens,
|
||||
add_special_tokens=request.add_special_tokens,
|
||||
cache_salt=getattr(request, 'cache_salt', None),
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported request of type {type(request)}")
|
||||
@ -177,7 +175,7 @@ class OpenAIServingPooling(OpenAIServing):
|
||||
request_id_item = f"{request_id}-{i}"
|
||||
|
||||
self._log_inputs(request_id_item,
|
||||
request_prompts[i],
|
||||
engine_prompt,
|
||||
params=pooling_params,
|
||||
lora_request=lora_request)
|
||||
|
||||
|
||||
@ -65,6 +65,7 @@ class OpenAIServingTokenization(OpenAIServing):
|
||||
lora_request = self._maybe_get_adapters(request)
|
||||
|
||||
tokenizer = await self.engine_client.get_tokenizer(lora_request)
|
||||
renderer = self._get_renderer(tokenizer)
|
||||
|
||||
if isinstance(request, TokenizeChatRequest):
|
||||
tool_dicts = (None if request.tools is None else
|
||||
@ -87,13 +88,11 @@ class OpenAIServingTokenization(OpenAIServing):
|
||||
add_special_tokens=request.add_special_tokens,
|
||||
)
|
||||
else:
|
||||
(request_prompts,
|
||||
engine_prompts) = await self._preprocess_completion(
|
||||
request,
|
||||
tokenizer,
|
||||
request.prompt,
|
||||
add_special_tokens=request.add_special_tokens,
|
||||
)
|
||||
engine_prompts = await renderer.render_prompt(
|
||||
prompt_or_prompts=request.prompt,
|
||||
add_special_tokens=request.add_special_tokens,
|
||||
cache_salt=getattr(request, 'cache_salt', None),
|
||||
)
|
||||
except (ValueError, TypeError, jinja2.TemplateError) as e:
|
||||
logger.exception("Error in preprocessing prompt inputs")
|
||||
return self.create_error_response(f"{e} {e.__cause__}")
|
||||
@ -101,7 +100,7 @@ class OpenAIServingTokenization(OpenAIServing):
|
||||
input_ids: list[int] = []
|
||||
for i, engine_prompt in enumerate(engine_prompts):
|
||||
self._log_inputs(request_id,
|
||||
request_prompts[i],
|
||||
engine_prompt,
|
||||
params=None,
|
||||
lora_request=lora_request)
|
||||
|
||||
|
||||
219
vllm/entrypoints/renderer.py
Normal file
219
vllm/entrypoints/renderer.py
Normal file
@ -0,0 +1,219 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import asyncio
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Annotated, Optional, Union
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from vllm.config import ModelConfig
|
||||
from vllm.inputs.data import TokensPrompt as EngineTokensPrompt
|
||||
from vllm.inputs.parse import parse_and_batch_prompt
|
||||
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
||||
from vllm.utils import AsyncMicrobatchTokenizer
|
||||
|
||||
|
||||
class BaseRenderer(ABC):
|
||||
"""
|
||||
Base class for unified input processing and rendering.
|
||||
|
||||
The Renderer serves as a unified input processor that consolidates
|
||||
tokenization, chat template formatting, and multimodal input handling
|
||||
into a single component.
|
||||
It converts high-level API requests (OpenAI-style JSON) into token IDs and
|
||||
multimodal features ready for engine consumption.
|
||||
|
||||
Key responsibilities:
|
||||
- Convert text prompts to token sequences with proper special tokens
|
||||
- Apply chat templates and format conversations
|
||||
- Handle multimodal inputs (images, audio, etc.) when applicable
|
||||
- Manage prompt truncation and length validation
|
||||
- Provide clean separation between API layer and engine core
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_config: ModelConfig,
|
||||
tokenizer: Optional[AnyTokenizer] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.model_config = model_config
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
@abstractmethod
|
||||
async def render_prompt(
|
||||
self,
|
||||
prompt_or_prompts: Union[str, list[str], list[int], list[list[int]]],
|
||||
max_length: Optional[int] = None,
|
||||
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None,
|
||||
add_special_tokens: Optional[bool] = True,
|
||||
cache_salt: Optional[str] = None,
|
||||
) -> list[EngineTokensPrompt]:
|
||||
"""
|
||||
Convert input prompts into tokenized format for engine processing.
|
||||
|
||||
This is the core method that transforms various input formats into
|
||||
standardized TokensPrompt objects. Implementations should handle
|
||||
tokenization, special token insertion, truncation, and validation
|
||||
according to model requirements.
|
||||
|
||||
Args:
|
||||
prompt_or_prompts: Input data in various formats:
|
||||
- str: Single text prompt
|
||||
- list[str]: Batch of text prompts
|
||||
- list[int]: Pre-tokenized sequence
|
||||
- list[list[int]]: Batch of pre-tokenized sequences
|
||||
max_length: Maximum sequence length (endpoint-specific behavior)
|
||||
truncate_prompt_tokens: Truncate to last N tokens
|
||||
(None=no truncation, 0=empty)
|
||||
add_special_tokens: Add model-specific tokens (e.g., [CLS], [SEP])
|
||||
to text inputs
|
||||
cache_salt: Optional string to disambiguate cached prompts
|
||||
|
||||
Returns:
|
||||
list[EngineTokensPrompt]: Tokenized prompts ready for engine
|
||||
consumption
|
||||
|
||||
Raises:
|
||||
ValueError: If input format is invalid or length limits exceeded
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class CompletionRenderer(BaseRenderer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_config: ModelConfig,
|
||||
tokenizer: Optional[AnyTokenizer] = None,
|
||||
async_tokenizer_pool: Optional[dict[AnyTokenizer,
|
||||
AsyncMicrobatchTokenizer]] = None,
|
||||
):
|
||||
super().__init__(model_config, tokenizer)
|
||||
self.async_tokenizer_pool = async_tokenizer_pool or {}
|
||||
self.async_tokenizer: Optional[AsyncMicrobatchTokenizer] = None
|
||||
|
||||
async def render_prompt(
|
||||
self,
|
||||
prompt_or_prompts: Union[str, list[str], list[int], list[list[int]]],
|
||||
max_length: Optional[int] = None,
|
||||
truncate_prompt_tokens: Optional[Annotated[int, Field(ge=-1)]] = None,
|
||||
add_special_tokens: Optional[bool] = True,
|
||||
cache_salt: Optional[str] = None,
|
||||
) -> list[EngineTokensPrompt]:
|
||||
"""Implementation of prompt rendering for completion-style requests.
|
||||
|
||||
Uses async tokenizer pooling for improved performance. See base class
|
||||
for detailed parameter documentation.
|
||||
"""
|
||||
if truncate_prompt_tokens is not None:
|
||||
if max_length is not None:
|
||||
assert 0 <= truncate_prompt_tokens <= max_length
|
||||
if truncate_prompt_tokens == 0:
|
||||
return []
|
||||
|
||||
# Parse and batch the input prompts
|
||||
batch_inputs = parse_and_batch_prompt(prompt_or_prompts)
|
||||
|
||||
rendered_prompts: list[EngineTokensPrompt] = []
|
||||
tokenize_tasks = []
|
||||
for prompt_input in batch_inputs:
|
||||
if prompt_input["is_tokens"] is True:
|
||||
# Token input
|
||||
token_ids = self._maybe_apply_truncation(
|
||||
prompt_input["content"], truncate_prompt_tokens)
|
||||
rendered_prompts.append(
|
||||
self._create_tokens_prompt(token_ids, max_length,
|
||||
cache_salt))
|
||||
else:
|
||||
# Text input
|
||||
tokenize_task = asyncio.create_task(
|
||||
self._tokenize(prompt_input["content"], max_length,
|
||||
truncate_prompt_tokens, add_special_tokens,
|
||||
cache_salt))
|
||||
tokenize_tasks.append(tokenize_task)
|
||||
|
||||
# Wait for all text tokenization to finish
|
||||
if tokenize_tasks:
|
||||
tokenized_text_prompts = await asyncio.gather(*tokenize_tasks)
|
||||
rendered_prompts.extend(tokenized_text_prompts)
|
||||
|
||||
return rendered_prompts
|
||||
|
||||
def _maybe_apply_truncation(
|
||||
self, token_ids: list[int],
|
||||
truncate_prompt_tokens: Optional[int]) -> list[int]:
|
||||
"""Apply truncation to token sequence."""
|
||||
if truncate_prompt_tokens is None:
|
||||
return token_ids
|
||||
if truncate_prompt_tokens >= len(token_ids):
|
||||
return token_ids
|
||||
|
||||
return token_ids[-truncate_prompt_tokens:]
|
||||
|
||||
async def _tokenize(
|
||||
self,
|
||||
text: str,
|
||||
max_length: Optional[int],
|
||||
truncate_prompt_tokens: Optional[int],
|
||||
add_special_tokens: Optional[bool],
|
||||
cache_salt: Optional[str],
|
||||
) -> EngineTokensPrompt:
|
||||
"""Tokenize text input asynchronously."""
|
||||
async_tokenizer = self._get_async_tokenizer()
|
||||
|
||||
# Handle encoder-specific preprocessing
|
||||
if (self.model_config.encoder_config is not None
|
||||
and self.model_config.encoder_config.get(
|
||||
"do_lower_case", False)):
|
||||
text = text.lower()
|
||||
|
||||
# Tokenize texts
|
||||
if truncate_prompt_tokens is None:
|
||||
encoded = await async_tokenizer(
|
||||
text, add_special_tokens=add_special_tokens)
|
||||
else:
|
||||
encoded = await async_tokenizer(
|
||||
text,
|
||||
add_special_tokens=add_special_tokens,
|
||||
truncation=True,
|
||||
max_length=truncate_prompt_tokens)
|
||||
|
||||
return self._create_tokens_prompt(encoded.input_ids, max_length,
|
||||
cache_salt)
|
||||
|
||||
def _get_async_tokenizer(self) -> AsyncMicrobatchTokenizer:
|
||||
"""Get or create async tokenizer using shared pool."""
|
||||
if self.async_tokenizer is not None:
|
||||
return self.async_tokenizer
|
||||
if self.tokenizer is None:
|
||||
raise ValueError(
|
||||
"No tokenizer available for text input processing")
|
||||
|
||||
# Check shared pool first
|
||||
if self.tokenizer in self.async_tokenizer_pool:
|
||||
return self.async_tokenizer_pool[self.tokenizer]
|
||||
|
||||
# Create new async tokenizer and add to pool
|
||||
self.async_tokenizer = AsyncMicrobatchTokenizer(self.tokenizer)
|
||||
self.async_tokenizer_pool[self.tokenizer] = self.async_tokenizer
|
||||
return self.async_tokenizer
|
||||
|
||||
def _create_tokens_prompt(
|
||||
self,
|
||||
token_ids: list[int],
|
||||
max_length: Optional[int] = None,
|
||||
cache_salt: Optional[str] = None,
|
||||
) -> EngineTokensPrompt:
|
||||
"""Create validated EngineTokensPrompt."""
|
||||
if max_length is not None and len(token_ids) > max_length:
|
||||
raise ValueError(
|
||||
f"This maximum context length is {max_length} tokens. "
|
||||
f"However, your request has {len(token_ids)} input tokens. "
|
||||
"Please reduce the length of the input messages.")
|
||||
|
||||
tokens_prompt = EngineTokensPrompt(prompt_token_ids=token_ids)
|
||||
if cache_salt is not None:
|
||||
tokens_prompt["cache_salt"] = cache_salt
|
||||
return tokens_prompt
|
||||
Loading…
x
Reference in New Issue
Block a user