diff --git a/vllm/model_executor/layers/rejection_sampler.py b/vllm/model_executor/layers/rejection_sampler.py index 2e9a0e170693..3ab0ba9e9f5c 100644 --- a/vllm/model_executor/layers/rejection_sampler.py +++ b/vllm/model_executor/layers/rejection_sampler.py @@ -368,7 +368,7 @@ class RejectionSampler(SpecDecodeStochasticBaseSampler): # Note that we always sample with replacement. # probs will be modified in place, but this is fine, as we pass # in a copy already. -@torch.jit.script +@torch.compile(dynamic=True) def _multinomial( probs: torch.Tensor, num_samples: int, diff --git a/vllm/model_executor/layers/vocab_parallel_embedding.py b/vllm/model_executor/layers/vocab_parallel_embedding.py index 52771f50a7a2..30548e656c55 100644 --- a/vllm/model_executor/layers/vocab_parallel_embedding.py +++ b/vllm/model_executor/layers/vocab_parallel_embedding.py @@ -133,13 +133,13 @@ class VocabParallelEmbeddingShardIndices: assert self.num_added_elements <= self.num_added_elements_padded -@torch.jit.script +@torch.compile(dynamic=True) def get_masked_input_and_mask( input_: torch.Tensor, org_vocab_start_index: int, org_vocab_end_index: int, num_org_vocab_padding: int, added_vocab_start_index: int, added_vocab_end_index: int) -> Tuple[torch.Tensor, torch.Tensor]: - # torch.jit.script will fuse all of the pointwise ops below + # torch.compile will fuse all of the pointwise ops below # into a single kernel, making it very fast org_vocab_mask = (input_ >= org_vocab_start_index) & (input_ < org_vocab_end_index) diff --git a/vllm/model_executor/models/phi3_small.py b/vllm/model_executor/models/phi3_small.py index a78e4d355a31..f71cbd1264c4 100644 --- a/vllm/model_executor/models/phi3_small.py +++ b/vllm/model_executor/models/phi3_small.py @@ -54,12 +54,12 @@ class HeadMajorColumnParallelLinear(MergedColumnParallelLinear): return load_column_parallel_weight(param, loaded_weight) -@torch.jit.script +@torch.compile(dynamic=True) def quick_gelu(x): return x * torch.sigmoid(1.702 * x) -@torch.jit.script +@torch.compile(dynamic=True) def gegelu(input, limit: Optional[float] = None): a_gelu, a_linear = input[..., ::2], input[..., 1::2] if limit is not None: diff --git a/vllm/worker/model_runner.py b/vllm/worker/model_runner.py index fb5813651680..ed0360fb7f72 100644 --- a/vllm/worker/model_runner.py +++ b/vllm/worker/model_runner.py @@ -1769,7 +1769,7 @@ class CUDAGraphRunner(nn.Module): # Run the model a few times without capturing the graph. # This is to make sure that the captured graph does not include the # kernel launches for initial benchmarking (e.g., Triton autotune). - # Note one iteration is not enough for torch.jit.script + # Note one iteration is not enough for torch.compile for _ in range(_NUM_WARMUP_ITERS): self.model( input_ids=input_ids,