Address Phi modeling update 2 (#2428)

This commit is contained in:
Gary Hui 2024-01-13 04:16:49 +08:00 committed by GitHub
parent ce036244c9
commit 7878958c0d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 61 additions and 63 deletions

View File

@ -33,7 +33,7 @@ _MODELS = {
"MptForCausalLM": ("mpt", "MPTForCausalLM"), "MptForCausalLM": ("mpt", "MPTForCausalLM"),
"MPTForCausalLM": ("mpt", "MPTForCausalLM"), "MPTForCausalLM": ("mpt", "MPTForCausalLM"),
"OPTForCausalLM": ("opt", "OPTForCausalLM"), "OPTForCausalLM": ("opt", "OPTForCausalLM"),
"PhiForCausalLM": ("phi_1_5", "PhiForCausalLM"), "PhiForCausalLM": ("phi", "PhiForCausalLM"),
"QWenLMHeadModel": ("qwen", "QWenLMHeadModel"), "QWenLMHeadModel": ("qwen", "QWenLMHeadModel"),
"RWForCausalLM": ("falcon", "FalconForCausalLM"), "RWForCausalLM": ("falcon", "FalconForCausalLM"),
"YiForCausalLM": ("yi", "YiForCausalLM"), "YiForCausalLM": ("yi", "YiForCausalLM"),

View File

@ -62,20 +62,6 @@ from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor] KVCache = Tuple[torch.Tensor, torch.Tensor]
class PhiEmbedding(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.wte = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
def forward(self, input_ids: torch.LongTensor):
return self.wte(input_ids)
class PhiAttention(nn.Module): class PhiAttention(nn.Module):
def __init__(self, def __init__(self,
@ -93,27 +79,22 @@ class PhiAttention(nn.Module):
tensor_model_parallel_world_size) tensor_model_parallel_world_size)
# pylint: disable=C0103 # pylint: disable=C0103
self.Wqkv = QKVParallelLinear( self.qkv_proj = QKVParallelLinear(
self.hidden_size, self.hidden_size,
self.head_size, self.head_size,
self.total_num_heads, self.total_num_heads,
bias=True,
linear_method=linear_method, linear_method=linear_method,
) )
self.qkv_proj = QKVParallelLinear( self.dense = RowParallelLinear(
config.hidden_size,
self.head_size,
self.total_num_heads,
bias=False,
linear_method=linear_method,
)
self.out_proj = RowParallelLinear(
self.hidden_size, self.hidden_size,
self.hidden_size, self.hidden_size,
linear_method=linear_method, linear_method=linear_method,
) )
scaling = self.head_size**-0.5 scaling = self.head_size**-0.5
rotary_dim = config.rotary_dim rotary_dim = int(config.partial_rotary_factor *
(config.hidden_size // config.num_attention_heads))
assert rotary_dim % 2 == 0 assert rotary_dim % 2 == 0
# pylint: disable=C0301 # pylint: disable=C0301
@ -136,12 +117,12 @@ class PhiAttention(nn.Module):
kv_cache: KVCache, kv_cache: KVCache,
input_metadata: InputMetadata, input_metadata: InputMetadata,
) -> torch.Tensor: ) -> torch.Tensor:
qkv, _ = self.Wqkv(hidden_states) qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1) q, k, v = qkv.chunk(chunks=3, dim=-1)
q, k = self.rotary_emb(position_ids, q, k) q, k = self.rotary_emb(position_ids, q, k)
k_cache, v_cache = kv_cache k_cache, v_cache = kv_cache
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata) attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
output, _ = self.out_proj(attn_output) output, _ = self.dense(attn_output)
return output return output
@ -166,8 +147,7 @@ class PhiMLP(nn.Module):
linear_method=linear_method, linear_method=linear_method,
) )
quant_config = getattr(linear_method, "quant_config", None) quant_config = getattr(linear_method, "quant_config", None)
self.act = get_act_fn(config.activation_function, quant_config, self.act = get_act_fn(config.hidden_act, quant_config, n_inner)
n_inner)
def forward(self, hidden_states): def forward(self, hidden_states):
hidden_states, _ = self.fc1(hidden_states) hidden_states, _ = self.fc1(hidden_states)
@ -182,9 +162,9 @@ class PhiLayer(nn.Module):
config: PretrainedConfig, config: PretrainedConfig,
linear_method: Optional[LinearMethodBase] = None): linear_method: Optional[LinearMethodBase] = None):
super().__init__() super().__init__()
self.ln = nn.LayerNorm(config.hidden_size, self.input_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon) eps=config.layer_norm_eps)
self.mixer = PhiAttention(config, linear_method) self.self_attn = PhiAttention(config, linear_method)
self.mlp = PhiMLP(config, linear_method) self.mlp = PhiMLP(config, linear_method)
def forward( def forward(
@ -195,8 +175,8 @@ class PhiLayer(nn.Module):
input_metadata: InputMetadata, input_metadata: InputMetadata,
) -> torch.Tensor: ) -> torch.Tensor:
residual = hidden_states residual = hidden_states
hidden_states = self.ln(hidden_states) hidden_states = self.input_layernorm(hidden_states)
attn_outputs = self.mixer( attn_outputs = self.self_attn(
position_ids=position_ids, position_ids=position_ids,
hidden_states=hidden_states, hidden_states=hidden_states,
kv_cache=kv_cache, kv_cache=kv_cache,
@ -215,11 +195,14 @@ class PhiModel(nn.Module):
super().__init__() super().__init__()
self.config = config self.config = config
self.linear_method = linear_method self.linear_method = linear_method
self.embd = PhiEmbedding(config) self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
self.h = nn.ModuleList([ config.hidden_size)
self.layers = nn.ModuleList([
PhiLayer(config, linear_method) PhiLayer(config, linear_method)
for _ in range(config.num_hidden_layers) for _ in range(config.num_hidden_layers)
]) ])
self.final_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
def forward( def forward(
self, self,
@ -228,29 +211,21 @@ class PhiModel(nn.Module):
kv_caches: List[KVCache], kv_caches: List[KVCache],
input_metadata: InputMetadata, input_metadata: InputMetadata,
) -> torch.Tensor: ) -> torch.Tensor:
hidden_states = self.embd(input_ids) hidden_states = self.embed_tokens(input_ids)
for i in range(self.config.num_hidden_layers): for i in range(self.config.num_hidden_layers):
layer = self.h[i] layer = self.layers[i]
hidden_states = layer( hidden_states = layer(
positions, positions,
hidden_states, hidden_states,
kv_caches[i], kv_caches[i],
input_metadata, input_metadata,
) )
hidden_states = self.final_layernorm(hidden_states)
return hidden_states return hidden_states
class PhiCausalLMHead(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.ln = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_epsilon)
self.linear = ParallelLMHead(config.vocab_size,
config.hidden_size,
bias=True)
class PhiForCausalLM(nn.Module): class PhiForCausalLM(nn.Module):
def __init__(self, def __init__(self,
@ -260,8 +235,11 @@ class PhiForCausalLM(nn.Module):
self.config = config self.config = config
self.linear_method = linear_method self.linear_method = linear_method
self.transformer = PhiModel(config, linear_method) self.model = PhiModel(config, linear_method)
self.lm_head = PhiCausalLMHead(config)
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
bias=True)
self.sampler = Sampler(config.vocab_size) self.sampler = Sampler(config.vocab_size)
def forward( def forward(
@ -271,9 +249,9 @@ class PhiForCausalLM(nn.Module):
kv_caches: List[KVCache], kv_caches: List[KVCache],
input_metadata: InputMetadata, input_metadata: InputMetadata,
) -> torch.Tensor: ) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches, hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata) input_metadata)
hidden_states = self.lm_head.ln(hidden_states)
return hidden_states return hidden_states
def sample( def sample(
@ -281,7 +259,7 @@ class PhiForCausalLM(nn.Module):
hidden_states: torch.Tensor, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata, sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]: ) -> Optional[SamplerOutput]:
head = self.lm_head.linear head = self.lm_head
next_tokens = self.sampler(head.weight, hidden_states, next_tokens = self.sampler(head.weight, hidden_states,
sampling_metadata, head.bias) sampling_metadata, head.bias)
return next_tokens return next_tokens
@ -291,17 +269,37 @@ class PhiForCausalLM(nn.Module):
cache_dir: Optional[str] = None, cache_dir: Optional[str] = None,
load_format: str = "auto", load_format: str = "auto",
revision: Optional[str] = None): revision: Optional[str] = None):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v")
]
params_dict = dict(self.named_parameters()) params_dict = dict(self.named_parameters())
for name, loaded_weight in hf_model_weights_iterator( for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision): model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name: if "rotary_emb.inv_freq" in name:
continue continue
# Skip loading extra bias for GPTQ models. for (param_name, weight_name, shard_id) in stacked_params_mapping:
if name.endswith(".bias") and name not in params_dict: if weight_name not in name:
continue continue
# pylint: disable=E1136 name = name.replace(weight_name, param_name)
param = params_dict[name] # Skip loading extra bias for GPTQ models.
weight_loader = getattr(param, "weight_loader", if name.endswith(".bias") and name not in params_dict:
default_weight_loader) continue
weight_loader(param, loaded_weight) param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# pylint: disable=E1136
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)