mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 14:56:08 +08:00
[CI] Speed up V1 structured output tests (#15718)
Signed-off-by: Russell Bryant <rbryant@redhat.com>
This commit is contained in:
parent
1286211f57
commit
7a7992085b
@ -23,20 +23,46 @@ MODELS_TO_TEST = [
|
||||
]
|
||||
|
||||
|
||||
class CarType(str, Enum):
|
||||
sedan = "sedan"
|
||||
suv = "SUV"
|
||||
truck = "Truck"
|
||||
coupe = "Coupe"
|
||||
|
||||
|
||||
class CarDescription(BaseModel):
|
||||
brand: str
|
||||
model: str
|
||||
car_type: CarType
|
||||
|
||||
|
||||
@pytest.mark.skip_global_cleanup
|
||||
@pytest.mark.parametrize("guided_decoding_backend",
|
||||
GUIDED_DECODING_BACKENDS_V1)
|
||||
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
|
||||
def test_guided_json_completion(
|
||||
def test_structured_output(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
sample_json_schema: dict[str, Any],
|
||||
unsupported_json_schema: dict[str, Any],
|
||||
sample_sql_ebnf: str,
|
||||
sample_sql_lark: str,
|
||||
sample_regex: str,
|
||||
sample_guided_choice: str,
|
||||
guided_decoding_backend: str,
|
||||
model_name: str,
|
||||
):
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1")
|
||||
|
||||
# Use a single LLM instance for several scenarios to
|
||||
# speed up the test suite.
|
||||
llm = LLM(model=model_name,
|
||||
enforce_eager=True,
|
||||
max_model_len=1024,
|
||||
guided_decoding_backend=guided_decoding_backend)
|
||||
|
||||
#
|
||||
# Test 1: Generate JSON output based on a provided schema
|
||||
#
|
||||
sampling_params = SamplingParams(
|
||||
temperature=1.0,
|
||||
max_tokens=1000,
|
||||
@ -63,20 +89,9 @@ def test_guided_json_completion(
|
||||
output_json = json.loads(generated_text)
|
||||
jsonschema.validate(instance=output_json, schema=sample_json_schema)
|
||||
|
||||
|
||||
@pytest.mark.skip_global_cleanup
|
||||
@pytest.mark.parametrize("guided_decoding_backend",
|
||||
GUIDED_DECODING_BACKENDS_V1)
|
||||
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
|
||||
def test_guided_json_object(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
guided_decoding_backend: str,
|
||||
model_name: str,
|
||||
):
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1")
|
||||
llm = LLM(model=model_name,
|
||||
max_model_len=1024,
|
||||
guided_decoding_backend=guided_decoding_backend)
|
||||
#
|
||||
# Test 2: Generate JSON object without a schema
|
||||
#
|
||||
sampling_params = SamplingParams(
|
||||
temperature=1.0,
|
||||
max_tokens=100,
|
||||
@ -111,21 +126,9 @@ def test_guided_json_object(
|
||||
allowed_types = (dict, list)
|
||||
assert isinstance(parsed_json, allowed_types)
|
||||
|
||||
|
||||
@pytest.mark.skip_global_cleanup
|
||||
@pytest.mark.parametrize("guided_decoding_backend",
|
||||
GUIDED_DECODING_BACKENDS_V1 + ["auto"])
|
||||
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
|
||||
def test_guided_json_unsupported_schema(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
unsupported_json_schema: dict[str, Any],
|
||||
guided_decoding_backend: str,
|
||||
model_name: str,
|
||||
):
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1")
|
||||
llm = LLM(model=model_name,
|
||||
max_model_len=1024,
|
||||
guided_decoding_backend=guided_decoding_backend)
|
||||
#
|
||||
# Test 3: test a jsonschema incompatible with xgrammar
|
||||
#
|
||||
sampling_params = SamplingParams(
|
||||
temperature=1.0,
|
||||
max_tokens=1000,
|
||||
@ -141,8 +144,6 @@ def test_guided_json_unsupported_schema(
|
||||
sampling_params=sampling_params,
|
||||
use_tqdm=True)
|
||||
else:
|
||||
# This should work for both "guidance" and "auto".
|
||||
|
||||
outputs = llm.generate(
|
||||
prompts=("Give an example JSON object for a grade "
|
||||
"that fits this schema: "
|
||||
@ -161,21 +162,9 @@ def test_guided_json_unsupported_schema(
|
||||
parsed_json = json.loads(generated_text)
|
||||
assert isinstance(parsed_json, dict)
|
||||
|
||||
|
||||
@pytest.mark.skip_global_cleanup
|
||||
@pytest.mark.parametrize("guided_decoding_backend",
|
||||
GUIDED_DECODING_BACKENDS_V1)
|
||||
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
|
||||
def test_guided_grammar_ebnf(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
sample_sql_ebnf: str,
|
||||
guided_decoding_backend: str,
|
||||
model_name: str,
|
||||
):
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1")
|
||||
llm = LLM(model=model_name,
|
||||
max_model_len=1024,
|
||||
guided_decoding_backend=guided_decoding_backend)
|
||||
#
|
||||
# Test 4: Generate SQL statement using EBNF grammar
|
||||
#
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.8,
|
||||
top_p=0.95,
|
||||
@ -205,21 +194,9 @@ def test_guided_grammar_ebnf(
|
||||
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
|
||||
@pytest.mark.skip_global_cleanup
|
||||
@pytest.mark.parametrize("guided_decoding_backend",
|
||||
GUIDED_DECODING_BACKENDS_V1)
|
||||
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
|
||||
def test_guided_grammar_lark(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
sample_sql_lark: str,
|
||||
guided_decoding_backend: str,
|
||||
model_name: str,
|
||||
):
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1")
|
||||
llm = LLM(model=model_name,
|
||||
max_model_len=1024,
|
||||
guided_decoding_backend=guided_decoding_backend)
|
||||
#
|
||||
# Test 5: Generate SQL statement using Lark grammar
|
||||
#
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.8,
|
||||
top_p=0.95,
|
||||
@ -254,20 +231,9 @@ def test_guided_grammar_lark(
|
||||
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
|
||||
@pytest.mark.skip_global_cleanup
|
||||
@pytest.mark.parametrize("guided_decoding_backend",
|
||||
GUIDED_DECODING_BACKENDS_V1)
|
||||
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
|
||||
def test_guided_grammar_ebnf_invalid(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
guided_decoding_backend: str,
|
||||
model_name: str,
|
||||
):
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1")
|
||||
llm = LLM(model=model_name,
|
||||
max_model_len=1024,
|
||||
guided_decoding_backend=guided_decoding_backend)
|
||||
#
|
||||
# Test 6: Test invalid grammar input
|
||||
#
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.8,
|
||||
top_p=0.95,
|
||||
@ -281,21 +247,9 @@ def test_guided_grammar_ebnf_invalid(
|
||||
use_tqdm=True,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skip_global_cleanup
|
||||
@pytest.mark.parametrize("guided_decoding_backend",
|
||||
GUIDED_DECODING_BACKENDS_V1)
|
||||
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
|
||||
def test_guided_regex(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
sample_regex: str,
|
||||
guided_decoding_backend: str,
|
||||
model_name: str,
|
||||
):
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1")
|
||||
llm = LLM(model=model_name,
|
||||
max_model_len=1024,
|
||||
guided_decoding_backend=guided_decoding_backend)
|
||||
#
|
||||
# Test 7: Generate text based on a regex pattern
|
||||
#
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.8,
|
||||
top_p=0.95,
|
||||
@ -319,21 +273,9 @@ def test_guided_regex(
|
||||
assert re.fullmatch(sample_regex, generated_text) is not None
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
|
||||
@pytest.mark.skip_global_cleanup
|
||||
@pytest.mark.parametrize("guided_decoding_backend",
|
||||
GUIDED_DECODING_BACKENDS_V1)
|
||||
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
|
||||
def test_guided_choice_completion(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
sample_guided_choice: str,
|
||||
guided_decoding_backend: str,
|
||||
model_name: str,
|
||||
):
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1")
|
||||
llm = LLM(model=model_name,
|
||||
max_model_len=1024,
|
||||
guided_decoding_backend=guided_decoding_backend)
|
||||
#
|
||||
# Test 8: Generate text based on a choices
|
||||
#
|
||||
sampling_params = SamplingParams(
|
||||
temperature=0.8,
|
||||
top_p=0.95,
|
||||
@ -353,33 +295,9 @@ def test_guided_choice_completion(
|
||||
assert generated_text in sample_guided_choice
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
|
||||
|
||||
class CarType(str, Enum):
|
||||
sedan = "sedan"
|
||||
suv = "SUV"
|
||||
truck = "Truck"
|
||||
coupe = "Coupe"
|
||||
|
||||
|
||||
class CarDescription(BaseModel):
|
||||
brand: str
|
||||
model: str
|
||||
car_type: CarType
|
||||
|
||||
|
||||
@pytest.mark.skip_global_cleanup
|
||||
@pytest.mark.parametrize("guided_decoding_backend",
|
||||
GUIDED_DECODING_BACKENDS_V1)
|
||||
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
|
||||
def test_guided_json_completion_with_enum(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
guided_decoding_backend: str,
|
||||
model_name: str,
|
||||
):
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1")
|
||||
llm = LLM(model=model_name,
|
||||
max_model_len=1024,
|
||||
guided_decoding_backend=guided_decoding_backend)
|
||||
#
|
||||
# Test 9: Generate structured output using a Pydantic model with an enum
|
||||
#
|
||||
json_schema = CarDescription.model_json_schema()
|
||||
sampling_params = SamplingParams(
|
||||
temperature=1.0,
|
||||
@ -403,3 +321,41 @@ def test_guided_json_completion_with_enum(
|
||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||||
output_json = json.loads(generated_text)
|
||||
jsonschema.validate(instance=output_json, schema=json_schema)
|
||||
|
||||
|
||||
@pytest.mark.skip_global_cleanup
|
||||
@pytest.mark.parametrize("model_name", MODELS_TO_TEST)
|
||||
def test_structured_output_auto_mode(
|
||||
monkeypatch: pytest.MonkeyPatch,
|
||||
unsupported_json_schema: dict[str, Any],
|
||||
model_name: str,
|
||||
):
|
||||
monkeypatch.setenv("VLLM_USE_V1", "1")
|
||||
|
||||
llm = LLM(model=model_name,
|
||||
max_model_len=1024,
|
||||
guided_decoding_backend="auto")
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
temperature=1.0,
|
||||
max_tokens=1000,
|
||||
guided_decoding=GuidedDecodingParams(json=unsupported_json_schema))
|
||||
|
||||
# This would fail with the default of "xgrammar", but in "auto"
|
||||
# we will handle fallback automatically.
|
||||
outputs = llm.generate(prompts=("Give an example JSON object for a grade "
|
||||
"that fits this schema: "
|
||||
f"{unsupported_json_schema}"),
|
||||
sampling_params=sampling_params,
|
||||
use_tqdm=True)
|
||||
assert outputs is not None
|
||||
for output in outputs:
|
||||
assert output is not None
|
||||
assert isinstance(output, RequestOutput)
|
||||
generated_text = output.outputs[0].text
|
||||
assert generated_text is not None
|
||||
print(generated_text)
|
||||
|
||||
# Parse to verify it is valid JSON
|
||||
parsed_json = json.loads(generated_text)
|
||||
assert isinstance(parsed_json, dict)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user