Add llama 4 scaling support (#28145)

Signed-off-by: Julien Denize <julien.denize@mistral.ai>
This commit is contained in:
Julien Denize 2025-11-06 19:55:17 +01:00 committed by GitHub
parent 5e0c1fe69c
commit 7a8375f8a0
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 59 additions and 8 deletions

View File

@ -191,9 +191,16 @@ def get_rope(
k: v
for k, v in rope_scaling.items()
if k
in ("extrapolation_factor", "attn_factor", "beta_fast", "beta_slow")
in (
"extrapolation_factor",
"attn_factor",
"beta_fast",
"beta_slow",
"apply_yarn_scaling",
)
}
if "mrope_section" in rope_scaling:
extra_kwargs.pop("apply_yarn_scaling", None)
rotary_emb = MRotaryEmbedding(
head_size,
rotary_dim,

View File

@ -27,6 +27,7 @@ class YaRNScalingRotaryEmbedding(RotaryEmbedding):
attn_factor: float = 1,
beta_fast: int = 32,
beta_slow: int = 1,
apply_yarn_scaling: bool = True,
) -> None:
self.scaling_factor = scaling_factor
self.extrapolation_factor = extrapolation_factor
@ -34,7 +35,11 @@ class YaRNScalingRotaryEmbedding(RotaryEmbedding):
self.beta_fast = beta_fast
self.beta_slow = beta_slow
# Get n-d magnitude scaling corrected for interpolation
self.mscale = float(yarn_get_mscale(self.scaling_factor) * attn_factor)
self.mscale = (
float(yarn_get_mscale(self.scaling_factor) * attn_factor)
if apply_yarn_scaling
else float(attn_factor)
)
super().__init__(
head_size, rotary_dim, max_position_embeddings, base, is_neox_style, dtype
)

View File

@ -160,6 +160,14 @@ class LlamaAttention(nn.Module):
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
llama_4_scaling_config = getattr(config, "llama_4_scaling", None)
self.do_llama_4_scaling = llama_4_scaling_config is not None
if self.do_llama_4_scaling:
self.llama_4_scaling_original_max_position_embeddings = (
llama_4_scaling_config["original_max_position_embeddings"]
)
self.llama_4_scaling_beta = llama_4_scaling_config["beta"]
self.qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=self.head_dim,
@ -221,6 +229,17 @@ class LlamaAttention(nn.Module):
prefix=f"{prefix}.attn",
)
def _get_llama_4_attn_scale(self, positions: torch.Tensor) -> torch.Tensor:
# Llama4 scaling
scaling = 1 + self.llama_4_scaling_beta * torch.log(
1
+ torch.floor(
positions / self.llama_4_scaling_original_max_position_embeddings
)
)
# Broadcast over head_dim
return scaling.unsqueeze(-1)
def forward(
self,
positions: torch.Tensor,
@ -229,6 +248,9 @@ class LlamaAttention(nn.Module):
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
if self.do_llama_4_scaling:
attn_scale = self._get_llama_4_attn_scale(positions)
q = (q * attn_scale).to(q.dtype)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output

View File

@ -24,6 +24,18 @@ def adapt_config_dict(config_dict: dict[str, Any], **kwargs) -> PretrainedConfig
if bool(config_dict.get("yarn")):
config_dict = _remap_mistral_yarn_args(config_dict)
if bool(config_dict.get("llama_4_scaling")):
llama_4_scaling_config_keys = ["original_max_position_embeddings", "beta"]
assert all(
[
key in config_dict["llama_4_scaling"]
for key in llama_4_scaling_config_keys
]
), (
"llama_4_scaling config should define the keys: "
f"{','.join(llama_4_scaling_config_keys)}"
)
is_vision = (config_dict.get("multimodal") or {}).get(
"vision_encoder_args"
) or config_dict.get("vision_encoder")
@ -66,19 +78,24 @@ def _remap_mistral_vision_args(config: dict) -> dict:
def _remap_mistral_yarn_args(config: dict) -> dict:
# Direct remaps: yarn.X -> rope_scaling.Y
# Source keys are from mistral.model.args.YarnArgs
_map = {
yarn_config_map = {
"factor": "factor",
"original_max_position_embeddings": "original_max_position_embeddings",
"beta": "beta_fast",
"alpha": "beta_slow",
"apply_scale": "apply_yarn_scaling",
}
yarn_config = config.get("yarn") or {}
renamed_yarn_config = {_map.get(k, k): v for k, v in yarn_config.items()}
config["rope_scaling"] = {
"rope_type": "yarn",
"mscale_all_dim": 1, # We hardcoded this to 1
**renamed_yarn_config,
"mscale_all_dim": 1,
}
for old_name, new_name in yarn_config_map.items():
if old_name in yarn_config:
config["rope_scaling"][new_name] = yarn_config.pop(old_name)
assert len(yarn_config) == 0, f"Unparsed yarn config: {yarn_config}"
return config