mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 23:06:10 +08:00
[Feature] Add support for MoE models in the calibration-free RTN-based quantization (#20766)
Signed-off-by: Alex Kogan <alex.kogan@oracle.com>
This commit is contained in:
parent
f1b286b2fb
commit
7ae75fa6d0
@ -8,7 +8,10 @@ import pytest
|
||||
|
||||
from tests.quantization.utils import is_quant_method_supported
|
||||
|
||||
MODELS = ["microsoft/Phi-3-mini-4k-instruct"]
|
||||
MODELS = [
|
||||
"microsoft/Phi-3-mini-4k-instruct", # dense model
|
||||
"ai21labs/Jamba-tiny-dev", # MoE model
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.skipif(not is_quant_method_supported("rtn"),
|
||||
|
||||
@ -3,18 +3,19 @@
|
||||
# Copyright © 2025, Oracle and/or its affiliates.
|
||||
|
||||
import os
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Callable, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.fused_moe import FusedMoE, FusedMoEMethodBase
|
||||
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
|
||||
set_weight_attrs)
|
||||
from vllm.model_executor.layers.quantization import QuantizationMethods
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
QuantizationConfig, QuantizeMethodBase)
|
||||
|
||||
logger = init_logger(__name__)
|
||||
"""By default, use 8 bit as target precision, but it can be
|
||||
@ -71,9 +72,11 @@ class RTNConfig(QuantizationConfig):
|
||||
return cls(weight_bits, group_size)
|
||||
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["RTNLinearMethod"]:
|
||||
prefix: str) -> Optional["QuantizeMethodBase"]:
|
||||
if isinstance(layer, LinearBase):
|
||||
return RTNLinearMethod(self)
|
||||
elif isinstance(layer, FusedMoE):
|
||||
return RTNMoEMethod(self)
|
||||
return None
|
||||
|
||||
|
||||
@ -94,11 +97,18 @@ class RTNTensor:
|
||||
self.data.narrow(dim, start // factor, length // factor),
|
||||
self.scale.narrow(dim, start, length), self.quant_config)
|
||||
|
||||
def __getitem__(self, key):
|
||||
return RTNTensor(self.data[key], self.scale[key], self.quant_config)
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
shape = self.data.shape
|
||||
factor = 1 if self.quant_config.weight_bits == 8 else 2
|
||||
return torch.Size((shape[0] * factor, shape[1]))
|
||||
batch_present = len(shape) == 3
|
||||
if batch_present:
|
||||
return torch.Size((shape[0], shape[1] * factor, shape[2]))
|
||||
else:
|
||||
return torch.Size((shape[0] * factor, shape[1]))
|
||||
|
||||
def copy_(self, loaded_weight: torch.Tensor) -> None:
|
||||
qweight, weight_scale = rtn_quantize(loaded_weight.cuda(),
|
||||
@ -165,7 +175,7 @@ class RTNLinearMethod(LinearMethodBase):
|
||||
weight = RTNParameter(data=torch.empty(output_size_per_partition //
|
||||
factor,
|
||||
input_size_per_partition,
|
||||
dtype=torch.int8),
|
||||
dtype=torch.uint8),
|
||||
scale=scale,
|
||||
quant_config=self.quant_config)
|
||||
|
||||
@ -180,18 +190,7 @@ class RTNLinearMethod(LinearMethodBase):
|
||||
layer.output_size_per_partition = output_size_per_partition
|
||||
|
||||
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
||||
"""torch.compile does not know how to deal with a Parameter subclass
|
||||
(aka RTNParameter). As we don't really need RTNParameters for the
|
||||
forward pass, we replace them with equivalent instances of Parameters.
|
||||
"""
|
||||
old_weight = layer.weight
|
||||
assert isinstance(old_weight, RTNParameter)
|
||||
data = old_weight.data.data
|
||||
|
||||
delattr(layer, "weight")
|
||||
|
||||
new_weight = Parameter(data=data, requires_grad=False)
|
||||
layer.register_parameter("weight", new_weight)
|
||||
fix_weights(layer, "weight")
|
||||
|
||||
def apply(self,
|
||||
layer: torch.nn.Module,
|
||||
@ -209,6 +208,128 @@ class RTNLinearMethod(LinearMethodBase):
|
||||
return out
|
||||
|
||||
|
||||
class RTNMoEMethod(FusedMoEMethodBase):
|
||||
|
||||
def __init__(self, quant_config: RTNConfig):
|
||||
self.quant_config = quant_config
|
||||
|
||||
def create_weights(self, layer: torch.nn.Module, num_experts: int,
|
||||
hidden_size: int, intermediate_size_per_partition: int,
|
||||
params_dtype: torch.dtype, **extra_weight_attrs):
|
||||
|
||||
factor = 1 if self.quant_config.weight_bits == 8 else 2
|
||||
|
||||
# Fused gate_up_proj (column parallel)
|
||||
num_groups_per_col = (hidden_size // self.quant_config.group_size
|
||||
if self.quant_config.group_size != -1 else 1)
|
||||
w13_scale = Parameter(
|
||||
torch.empty(num_experts,
|
||||
2 * intermediate_size_per_partition,
|
||||
num_groups_per_col,
|
||||
dtype=params_dtype),
|
||||
requires_grad=False,
|
||||
)
|
||||
layer.register_parameter("w13_scale", w13_scale)
|
||||
|
||||
w13_weight = RTNParameter(data=torch.empty(
|
||||
num_experts,
|
||||
2 * intermediate_size_per_partition // factor,
|
||||
hidden_size,
|
||||
dtype=torch.uint8),
|
||||
scale=w13_scale,
|
||||
quant_config=self.quant_config)
|
||||
layer.register_parameter("w13_weight", w13_weight)
|
||||
set_weight_attrs(w13_weight, extra_weight_attrs)
|
||||
|
||||
# down_proj (row parallel)
|
||||
num_groups_per_col = (intermediate_size_per_partition //
|
||||
self.quant_config.group_size
|
||||
if self.quant_config.group_size != -1 else 1)
|
||||
w2_scale = Parameter(torch.zeros(num_experts,
|
||||
hidden_size,
|
||||
num_groups_per_col,
|
||||
dtype=params_dtype),
|
||||
requires_grad=False)
|
||||
layer.register_parameter("w2_scale", w2_scale)
|
||||
|
||||
w2_weight = RTNParameter(data=torch.empty(
|
||||
num_experts,
|
||||
hidden_size // factor,
|
||||
intermediate_size_per_partition,
|
||||
dtype=torch.uint8),
|
||||
scale=w2_scale,
|
||||
quant_config=self.quant_config)
|
||||
layer.register_parameter("w2_weight", w2_weight)
|
||||
set_weight_attrs(w2_weight, extra_weight_attrs)
|
||||
|
||||
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
||||
weight_bits = self.quant_config.weight_bits
|
||||
fix_weights(layer, "w13_weight", weight_bits == 4)
|
||||
fix_weights(layer, "w2_weight", weight_bits == 4)
|
||||
|
||||
def apply(
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
router_logits: torch.Tensor,
|
||||
top_k: int,
|
||||
renormalize: bool,
|
||||
use_grouped_topk: bool = False,
|
||||
topk_group: Optional[int] = None,
|
||||
num_expert_group: Optional[int] = None,
|
||||
global_num_experts: int = -1,
|
||||
expert_map: Optional[torch.Tensor] = None,
|
||||
custom_routing_function: Optional[Callable] = None,
|
||||
scoring_func: str = "softmax",
|
||||
e_score_correction_bias: Optional[torch.Tensor] = None,
|
||||
apply_router_weight_on_input: bool = False,
|
||||
activation: str = "silu",
|
||||
enable_eplb: bool = False,
|
||||
expert_load_view: Optional[torch.Tensor] = None,
|
||||
logical_to_physical_map: Optional[torch.Tensor] = None,
|
||||
logical_replica_count: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
if enable_eplb:
|
||||
raise NotImplementedError(
|
||||
"EPLB not supported for `RTNMoEMethod` yet.")
|
||||
|
||||
from vllm.model_executor.layers.fused_moe import fused_experts
|
||||
|
||||
topk_weights, topk_ids = FusedMoE.select_experts(
|
||||
hidden_states=x,
|
||||
router_logits=router_logits,
|
||||
use_grouped_topk=use_grouped_topk,
|
||||
top_k=top_k,
|
||||
renormalize=renormalize,
|
||||
topk_group=topk_group,
|
||||
num_expert_group=num_expert_group,
|
||||
custom_routing_function=custom_routing_function,
|
||||
scoring_func=scoring_func,
|
||||
e_score_correction_bias=e_score_correction_bias)
|
||||
|
||||
weight_bits = self.quant_config.weight_bits
|
||||
group_size = self.quant_config.group_size
|
||||
|
||||
ret = fused_experts(
|
||||
x,
|
||||
layer.w13_weight,
|
||||
layer.w2_weight,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
inplace=True,
|
||||
activation=activation,
|
||||
use_int4_w4a16=weight_bits == 4,
|
||||
use_int8_w8a16=weight_bits == 8,
|
||||
global_num_experts=global_num_experts,
|
||||
w1_scale=layer.w13_scale,
|
||||
w2_scale=layer.w2_scale,
|
||||
apply_router_weight_on_input=apply_router_weight_on_input,
|
||||
expert_map=expert_map,
|
||||
block_shape=[0, group_size])
|
||||
|
||||
return ret
|
||||
|
||||
|
||||
def rtn_quantize(tensor: torch.Tensor, num_bits: int,
|
||||
group_size: int) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Quantize a tensor using per-group static scaling factor.
|
||||
@ -221,34 +342,44 @@ def rtn_quantize(tensor: torch.Tensor, num_bits: int,
|
||||
If equal to -1, each row in the input tensor is treated
|
||||
as one group.
|
||||
"""
|
||||
batch_present = len(tensor.shape) == 3
|
||||
if not batch_present:
|
||||
tensor = tensor.unsqueeze(0)
|
||||
|
||||
q_range = 2**num_bits
|
||||
num_groups = (tensor.shape[0] * tensor.shape[1] //
|
||||
group_size if group_size != -1 else tensor.shape[0])
|
||||
num_groups = (tensor.shape[1] * tensor.shape[2] //
|
||||
group_size if group_size != -1 else tensor.shape[1])
|
||||
"""Calculate a scaling factor per input group.
|
||||
"""
|
||||
input_flat = tensor.reshape(num_groups, -1)
|
||||
input_min = torch.min(input_flat, dim=1, keepdim=True)[0]
|
||||
input_max = torch.max(input_flat, dim=1, keepdim=True)[0]
|
||||
input_flat = tensor.reshape(tensor.shape[0], num_groups, -1)
|
||||
input_min = torch.min(input_flat, dim=2, keepdim=True)[0]
|
||||
input_max = torch.max(input_flat, dim=2, keepdim=True)[0]
|
||||
input_max_abs = torch.max(input_min.abs(), input_max.abs())
|
||||
scale = (input_max_abs * 2.0 / (q_range - 1))
|
||||
"""Scale each input group, truncate and round to the nearest integer.
|
||||
"""Scale each input group, round to the nearest integer, shift
|
||||
the range and truncate.
|
||||
"""
|
||||
scaled_input = input_flat / scale
|
||||
scaled_input = scaled_input.clamp(-q_range // 2, q_range // 2 - 1)
|
||||
scaled_input = scaled_input.round()
|
||||
scaled_input += q_range // 2
|
||||
scaled_input = scaled_input.clamp(0, q_range - 1)
|
||||
|
||||
scale = scale.reshape(tensor.shape[0], -1).contiguous()
|
||||
inputs_q = scaled_input.reshape(tensor.shape).to(torch.int8)
|
||||
scale = scale.reshape(tensor.shape[0], tensor.shape[1], -1).contiguous()
|
||||
inputs_q = scaled_input.reshape(tensor.shape).to(torch.uint8)
|
||||
inputs_q = inputs_q.contiguous()
|
||||
|
||||
if num_bits == 4:
|
||||
"""Pack two 4-bit values into each byte.
|
||||
"""
|
||||
inputs_q = (inputs_q[:, 1::2] << 4) | (inputs_q[:, ::2] & 0xf)
|
||||
inputs_q = inputs_q.reshape(tensor.shape[0] // 2, tensor.shape[1])
|
||||
inputs_q = (inputs_q[:, :, 1::2] << 4) | (inputs_q[:, :, ::2] & 0xf)
|
||||
inputs_q = inputs_q.reshape(tensor.shape[0], tensor.shape[1] // 2,
|
||||
tensor.shape[2])
|
||||
inputs_q = inputs_q.contiguous()
|
||||
|
||||
if not batch_present:
|
||||
inputs_q = inputs_q.squeeze(0)
|
||||
scale = scale.squeeze(0)
|
||||
|
||||
return inputs_q, scale
|
||||
|
||||
|
||||
@ -259,31 +390,60 @@ def rtn_dequantize(tensor: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
|
||||
tensor: The input tensor.
|
||||
scale: The tensor with per-group scale factors.
|
||||
"""
|
||||
batch_present = len(tensor.shape) == 3
|
||||
if not batch_present:
|
||||
tensor = tensor.unsqueeze(0)
|
||||
scale = scale.unsqueeze(0)
|
||||
|
||||
num_groups = scale.size(0) * scale.size(1)
|
||||
input_dim, output_dim = tensor.shape
|
||||
num_groups = scale.size(1) * scale.size(2)
|
||||
batch, input_dim, output_dim = tensor.shape
|
||||
|
||||
num_bits = 8 if input_dim == scale.size(0) else 4
|
||||
num_bits = 8 if input_dim == scale.size(1) else 4
|
||||
q_range = 2**num_bits
|
||||
if num_bits == 4:
|
||||
input_dim *= 2
|
||||
|
||||
data = torch.empty((input_dim, output_dim),
|
||||
data = torch.empty((batch, input_dim, output_dim),
|
||||
dtype=scale.dtype,
|
||||
device=tensor.device)
|
||||
|
||||
if num_bits == 8:
|
||||
data.copy_(tensor)
|
||||
data -= q_range // 2
|
||||
else:
|
||||
"""Unpack two 4-bit values from each byte.
|
||||
"""
|
||||
tensor = tensor.reshape(input_dim, output_dim // 2)
|
||||
tensor = tensor.reshape(batch, input_dim, output_dim // 2)
|
||||
for i in range(2):
|
||||
data[:, i::2] = (tensor << 4 * (1 - i)) >> 4
|
||||
data[:, :, i::2] = ((tensor << 4 *
|
||||
(1 - i)) >> 4).to(torch.int8) - q_range // 2
|
||||
"""Scale each input group with its scaling factor.
|
||||
"""
|
||||
scale = scale.reshape(num_groups, -1)
|
||||
data = data.reshape(num_groups, -1)
|
||||
scale = scale.reshape(batch, num_groups, -1)
|
||||
data = data.reshape(batch, num_groups, -1)
|
||||
data = torch.mul(data, scale)
|
||||
|
||||
input_deq = data.reshape((input_dim, output_dim)).contiguous()
|
||||
input_deq = data.reshape((batch, input_dim, output_dim)).contiguous()
|
||||
if not batch_present:
|
||||
input_deq = input_deq.squeeze(0)
|
||||
|
||||
return input_deq
|
||||
|
||||
|
||||
def fix_weights(layer: torch.nn.Module,
|
||||
param_name: str,
|
||||
reshape: bool = False):
|
||||
"""torch.compile does not know how to deal with a Parameter subclass
|
||||
(aka RTNParameter). As we don't really need RTNParameters for the
|
||||
forward pass, we replace them with equivalent instances of Parameters.
|
||||
"""
|
||||
old_weight = getattr(layer, param_name)
|
||||
assert isinstance(old_weight, RTNParameter)
|
||||
data = old_weight.data.data
|
||||
|
||||
delattr(layer, param_name)
|
||||
|
||||
if reshape:
|
||||
data = data.reshape(old_weight.shape[0], old_weight.shape[1] * 2, -1)
|
||||
new_weight = Parameter(data=data, requires_grad=False)
|
||||
layer.register_parameter(param_name, new_weight)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user