mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 19:35:44 +08:00
[Model][V1] Support Ernie MTP (#22169)
Signed-off-by: zhouchong <zhouchong03@baidu.com> Co-authored-by: zhouchong <zhouchong03@baidu.com>
This commit is contained in:
parent
50df09fe13
commit
7cd17e22d7
@ -556,6 +556,9 @@ _SPECULATIVE_DECODING_EXAMPLE_MODELS = {
|
||||
is_available_online=False,
|
||||
speculative_model="openbmb/MiniCPM-2B-sft-bf16",
|
||||
tokenizer="openbmb/MiniCPM-2B-sft-bf16"),
|
||||
"ErnieMTPModel": _HfExamplesInfo("baidu/ERNIE-4.5-21B-A3B-PT",
|
||||
trust_remote_code=True,
|
||||
speculative_model="baidu/ERNIE-4.5-21B-A3B-PT"),
|
||||
"Glm4MoeMTPModel": _HfExamplesInfo("zai-org/GLM-4.5",
|
||||
speculative_model="zai-org/GLM-4.5",
|
||||
min_transformers_version="4.54",
|
||||
|
||||
@ -1463,7 +1463,8 @@ class ModelConfig:
|
||||
from vllm.distributed.utils import get_pp_indices
|
||||
if (self.hf_text_config.model_type == "deepseek_mtp"
|
||||
or self.hf_config.model_type == "mimo_mtp"
|
||||
or self.hf_config.model_type == "glm4_moe_mtp"):
|
||||
or self.hf_config.model_type == "glm4_moe_mtp"
|
||||
or self.hf_config.model_type == "ernie_mtp"):
|
||||
total_num_hidden_layers = getattr(self.hf_text_config,
|
||||
"num_nextn_predict_layers", 0)
|
||||
else:
|
||||
@ -1911,7 +1912,8 @@ class DeviceConfig:
|
||||
|
||||
|
||||
SpeculativeMethod = Literal["ngram", "eagle", "eagle3", "medusa",
|
||||
"mlp_speculator", "draft_model", "deepseek_mtp"]
|
||||
"mlp_speculator", "draft_model", "deepseek_mtp",
|
||||
"ernie_mtp"]
|
||||
|
||||
|
||||
@config
|
||||
@ -2044,6 +2046,16 @@ class SpeculativeConfig:
|
||||
"architectures": ["Glm4MoeMTPModel"]
|
||||
})
|
||||
|
||||
if hf_config.model_type == "ernie4_5_moe":
|
||||
hf_config.model_type = "ernie_mtp"
|
||||
if hf_config.model_type == "ernie_mtp":
|
||||
n_predict = getattr(hf_config, "num_nextn_predict_layers", None)
|
||||
hf_config.update({
|
||||
"n_predict": n_predict,
|
||||
"architectures": ["ErnieMTPModel"]
|
||||
})
|
||||
return hf_config
|
||||
|
||||
return hf_config
|
||||
|
||||
def __post_init__(self):
|
||||
@ -2062,8 +2074,8 @@ class SpeculativeConfig:
|
||||
if self.target_model_config and \
|
||||
(self.target_model_config.hf_text_config.model_type \
|
||||
== "deepseek_v3" or
|
||||
self.target_model_config.hf_text_config.model_type \
|
||||
== "mimo"):
|
||||
self.target_model_config.hf_text_config.model_type in
|
||||
("mimo","ernie4_5_moe")):
|
||||
# use the draft model from the same model:
|
||||
self.model = self.target_model_config.model
|
||||
elif self.method in ("ngram", "[ngram]"):
|
||||
@ -2161,6 +2173,15 @@ class SpeculativeConfig:
|
||||
"one layer. Might need some code changes " \
|
||||
"to support multiple layers."
|
||||
)
|
||||
elif (self.draft_model_config.hf_config.model_type ==
|
||||
"ernie_mtp"):
|
||||
self.method = "ernie_mtp"
|
||||
if self.num_speculative_tokens > 1:
|
||||
logger.warning(
|
||||
"All Ernie MTP models only have " \
|
||||
"one layer. Might need some code changes " \
|
||||
"to support multiple layers."
|
||||
)
|
||||
else:
|
||||
self.method = "draft_model"
|
||||
raise NotImplementedError(
|
||||
@ -2376,7 +2397,7 @@ class SpeculativeConfig:
|
||||
return self.num_speculative_tokens
|
||||
|
||||
def use_eagle(self) -> bool:
|
||||
return self.method in ("eagle", "eagle3", "deepseek_mtp")
|
||||
return self.method in ("eagle", "eagle3", "deepseek_mtp", "ernie_mtp")
|
||||
|
||||
def __repr__(self) -> str:
|
||||
method = self.method
|
||||
|
||||
287
vllm/model_executor/models/ernie_mtp.py
Normal file
287
vllm/model_executor/models/ernie_mtp.py
Normal file
@ -0,0 +1,287 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# Copyright 2025 The Baidu team.
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only Ernie-MTP model."""
|
||||
from collections.abc import Iterable
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from vllm.config import CacheConfig, ModelConfig, VllmConfig
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsPP
|
||||
from .llama import LlamaDecoderLayer
|
||||
from .utils import is_pp_missing_parameter, maybe_prefix
|
||||
|
||||
|
||||
class ErnieMultiTokenPredictorLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
prefix: str,
|
||||
model_config: ModelConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.mtp_emb_norm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.mtp_hidden_norm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.mtp_linear_proj = nn.Linear(config.hidden_size * 2,
|
||||
config.hidden_size,
|
||||
bias=False)
|
||||
self.mtp_block = LlamaDecoderLayer(config, cache_config, quant_config,
|
||||
prefix)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
inputs_embeds: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
previous_hidden_states: torch.Tensor,
|
||||
spec_step_index: int = 0,
|
||||
) -> torch.Tensor:
|
||||
assert inputs_embeds is not None
|
||||
# masking inputs at position 0, as not needed by MTP
|
||||
inputs_embeds[positions == 0] = 0
|
||||
|
||||
inputs_embeds = self.mtp_emb_norm(inputs_embeds)
|
||||
previous_hidden_states = self.mtp_hidden_norm(previous_hidden_states)
|
||||
|
||||
hidden_states = self.mtp_linear_proj(
|
||||
torch.cat([inputs_embeds, previous_hidden_states], dim=-1))
|
||||
|
||||
hidden_states, residual = self.mtp_block(positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
residual=None)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class ErnieMultiTokenPredictor(nn.Module):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
|
||||
config = vllm_config.model_config.hf_config
|
||||
self.mtp_start_layer_idx = config.num_hidden_layers
|
||||
self.num_mtp_layers = config.num_nextn_predict_layers
|
||||
# to map the exact layer index from weights
|
||||
self.layers = torch.nn.ModuleDict({
|
||||
str(idx):
|
||||
ErnieMultiTokenPredictorLayer(
|
||||
config,
|
||||
f"{prefix}.layers.{idx}",
|
||||
model_config=vllm_config.model_config,
|
||||
cache_config=vllm_config.cache_config,
|
||||
)
|
||||
for idx in range(self.mtp_start_layer_idx,
|
||||
self.mtp_start_layer_idx + self.num_mtp_layers)
|
||||
})
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
previous_hidden_states: torch.Tensor,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
return self.layers[str(self.mtp_start_layer_idx + spec_step_idx)](
|
||||
inputs_embeds,
|
||||
positions,
|
||||
previous_hidden_states,
|
||||
spec_step_idx,
|
||||
)
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
lm_head: ParallelLMHead,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
self.layers[str(self.mtp_start_layer_idx + spec_step_idx)]
|
||||
logits = self.logits_processor(lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
|
||||
class ErnieMTP(nn.Module, SupportsPP):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
|
||||
self.config = vllm_config.model_config.hf_config
|
||||
self.model = ErnieMultiTokenPredictor(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(
|
||||
prefix, "model"))
|
||||
self.lm_head = ParallelLMHead(self.config.vocab_size,
|
||||
self.config.hidden_size)
|
||||
self.sampler = get_sampler()
|
||||
|
||||
if self.config.tie_word_embeddings:
|
||||
self.lm_head.weight = self.model.embed_tokens.weight
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
assert spec_step_idx == 0, "ernie_mtp only support predict one token"
|
||||
hidden_states = self.model(input_ids, positions, hidden_states,
|
||||
inputs_embeds, spec_step_idx)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
spec_step_idx: int = 0,
|
||||
) -> Optional[torch.Tensor]:
|
||||
return self.model.compute_logits(hidden_states, self.lm_head,
|
||||
sampling_metadata, spec_step_idx)
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
stacked_params_mapping = [
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
loaded_params: set[str] = set()
|
||||
for name, loaded_weight in weights:
|
||||
|
||||
if self.config.tie_word_embeddings and name.endswith(
|
||||
"lm_head.weight"):
|
||||
continue
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
if "mtp" in name:
|
||||
name = self._rewrite_spec_layer_name(self.config, name)
|
||||
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
# Skip non-stacked layers and experts (experts handled below).
|
||||
if weight_name not in name:
|
||||
continue
|
||||
if "mtp" not in name:
|
||||
continue
|
||||
# We have mlp.experts[0].gate_proj in the checkpoint.
|
||||
# Since we handle the experts below in expert_params_mapping,
|
||||
# we need to skip here BEFORE we update the name, otherwise
|
||||
# name will be updated to mlp.experts[0].gate_up_proj, which
|
||||
# will then be updated below in expert_params_mapping
|
||||
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
||||
if (("mlp.experts." in name) and name not in params_dict):
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if ((name.endswith(".bias") or name.endswith("_bias"))
|
||||
and name not in params_dict):
|
||||
continue
|
||||
# Skip layers on other devices.
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if ((name.endswith(".bias") or name.endswith("_bias"))
|
||||
and name not in params_dict):
|
||||
continue
|
||||
# Skip layers on other devices.
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
# According to DeepSeek-V3 Technical Report, MTP modules
|
||||
# shares embedding layer. We only load the first weights.
|
||||
if "mtp_" not in name and ("embed_tokens" not in name
|
||||
and "lm_head" not in name):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
loaded_params.add(name)
|
||||
return loaded_params
|
||||
|
||||
def _rewrite_spec_layer_name(self, config: PretrainedConfig,
|
||||
name: str) -> str:
|
||||
"""
|
||||
Rewrite the weight name to match the format of the original model.
|
||||
"""
|
||||
spec_layer_weight_names = [
|
||||
"embed_tokens", "mtp_emb_norm", "mtp_hidden_norm",
|
||||
"mtp_linear_proj"
|
||||
]
|
||||
layer_idx = config.num_hidden_layers
|
||||
for weight_name in spec_layer_weight_names:
|
||||
if weight_name in name:
|
||||
name = name.replace(
|
||||
f"model.{weight_name}.0.",
|
||||
f"model.layers.{layer_idx}.{weight_name}.")
|
||||
return name
|
||||
name = name.replace("model.mtp_block.0.",
|
||||
f"model.layers.{layer_idx}.mtp_block.")
|
||||
return name
|
||||
@ -266,6 +266,7 @@ _SPECULATIVE_DECODING_MODELS = {
|
||||
# "LlamaForCausalLMEagle3": ("llama_eagle3", "Eagle3LlamaForCausalLM"),
|
||||
"EagleDeepSeekMTPModel": ("deepseek_eagle", "EagleDeepseekV3ForCausalLM"),
|
||||
"DeepSeekMTPModel": ("deepseek_mtp", "DeepSeekMTP"),
|
||||
"ErnieMTPModel": ("ernie_mtp", "ErnieMTP"),
|
||||
"Glm4MoeMTPModel": ("glm4_moe_mtp", "Glm4MoeMTP"),
|
||||
"MedusaModel": ("medusa", "Medusa"),
|
||||
# Temporarily disabled.
|
||||
|
||||
@ -194,7 +194,7 @@ class EagleProposer:
|
||||
hidden_states=self.hidden_states[:num_input_tokens],
|
||||
inputs_embeds=inputs_embeds,
|
||||
)
|
||||
if self.method == "deepseek_mtp":
|
||||
if self.method in ("deepseek_mtp", "ernie_mtp"):
|
||||
last_hidden_states = ret_hidden_states
|
||||
else:
|
||||
last_hidden_states, hidden_states = ret_hidden_states
|
||||
|
||||
@ -77,7 +77,8 @@ class Worker(LocalOrDistributedWorkerBase):
|
||||
"eagle",
|
||||
"deepseek_mtp",
|
||||
"glm4_moe_mtp",
|
||||
"mimo_mtp")) \
|
||||
"mimo_mtp",
|
||||
"ernie_mtp")) \
|
||||
else {"return_hidden_states": True}
|
||||
|
||||
ModelRunnerClass: Type[GPUModelRunnerBase] = ModelRunner
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user