mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-30 21:16:32 +08:00
[Misc] Add support for new autogptq checkpoint_format (#3689)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
This commit is contained in:
parent
93deb0b38f
commit
7d4e1b85e7
68
tests/quantization/test_autogptq_marlin_configs.py
Normal file
68
tests/quantization/test_autogptq_marlin_configs.py
Normal file
@ -0,0 +1,68 @@
|
||||
"""Tests whether Marlin models can be loaded from the autogptq config.
|
||||
|
||||
Run `pytest tests/quantization/test_autogptq_marlin_configs.py --forked`.
|
||||
"""
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
||||
import pytest
|
||||
|
||||
from vllm.config import ModelConfig
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelPair:
|
||||
model_marlin: str
|
||||
model_gptq: str
|
||||
|
||||
|
||||
# Model Id // Expected Kernel
|
||||
MODELS_QUANT_TYPE = [
|
||||
# compat: autogptq <=0.7.1 is_marlin_format: bool
|
||||
("neuralmagic/TinyLlama-1.1B-Chat-v1.0-marlin", "marlin"),
|
||||
("TheBloke/Llama-2-7B-Chat-GPTQ", "gptq"),
|
||||
# compat: autogptq >=0.8.0 use checkpoint_format: str
|
||||
("LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-Marlin-4bit", "marlin"),
|
||||
("LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit", "gptq")
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("model_quant_type", MODELS_QUANT_TYPE)
|
||||
def test_auto_gptq(model_quant_type: str, ) -> None:
|
||||
model_path, quant_type = model_quant_type
|
||||
|
||||
model_config_no_quant_arg = ModelConfig(
|
||||
model_path,
|
||||
model_path,
|
||||
tokenizer_mode="auto",
|
||||
trust_remote_code=False,
|
||||
download_dir=None,
|
||||
load_format="dummy",
|
||||
seed=0,
|
||||
dtype="float16",
|
||||
revision=None,
|
||||
quantization=None # case 1
|
||||
)
|
||||
|
||||
model_config_quant_arg = ModelConfig(
|
||||
model_path,
|
||||
model_path,
|
||||
tokenizer_mode="auto",
|
||||
trust_remote_code=False,
|
||||
download_dir=None,
|
||||
load_format="dummy",
|
||||
seed=0,
|
||||
dtype="float16",
|
||||
revision=None,
|
||||
quantization="gptq" # case 2
|
||||
)
|
||||
|
||||
assert model_config_no_quant_arg.quantization == quant_type, (
|
||||
f"Expected quant_type == {quant_type} for {model_path}, "
|
||||
f"but found {model_config_no_quant_arg.quantization} "
|
||||
"for no --quantization None case")
|
||||
|
||||
assert model_config_quant_arg.quantization == quant_type, (
|
||||
f"Expected quant_type == {quant_type} for {model_path}, "
|
||||
f"but found {model_config_quant_arg.quantization} "
|
||||
"for --quantization gptq case")
|
||||
@ -171,26 +171,28 @@ class ModelConfig:
|
||||
self.quantization = self.quantization.lower()
|
||||
|
||||
# Parse quantization method from the HF model config, if available.
|
||||
hf_quant_config = getattr(self.hf_config, "quantization_config", None)
|
||||
if hf_quant_config is not None:
|
||||
hf_quant_method = str(hf_quant_config["quant_method"]).lower()
|
||||
quant_cfg = getattr(self.hf_config, "quantization_config", None)
|
||||
if quant_cfg is not None:
|
||||
quant_method = quant_cfg.get("quant_method", "").lower()
|
||||
# compat: autogptq >=0.8.0 use checkpoint_format: str
|
||||
# compat: autogptq <=0.7.1 is_marlin_format: bool
|
||||
is_format_marlin = (quant_cfg.get("checkpoint_format") == "marlin"
|
||||
or quant_cfg.get("is_marlin_format", False))
|
||||
|
||||
# If the GPTQ model is serialized in marlin format, use marlin.
|
||||
if (hf_quant_method == "gptq"
|
||||
and "is_marlin_format" in hf_quant_config
|
||||
and hf_quant_config["is_marlin_format"]):
|
||||
# Use marlin if the GPTQ model is serialized in marlin format.
|
||||
if quant_method == "gptq" and is_format_marlin:
|
||||
logger.info("The model is serialized in Marlin format. "
|
||||
"Using Marlin kernel.")
|
||||
hf_quant_method = "marlin"
|
||||
quant_method = "marlin"
|
||||
if self.quantization == "gptq":
|
||||
self.quantization = hf_quant_method
|
||||
self.quantization = quant_method
|
||||
|
||||
if self.quantization is None:
|
||||
self.quantization = hf_quant_method
|
||||
elif self.quantization != hf_quant_method:
|
||||
self.quantization = quant_method
|
||||
elif self.quantization != quant_method:
|
||||
raise ValueError(
|
||||
"Quantization method specified in the model config "
|
||||
f"({hf_quant_method}) does not match the quantization "
|
||||
f"({quant_method}) does not match the quantization "
|
||||
f"method specified in the `quantization` argument "
|
||||
f"({self.quantization}).")
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user