mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 04:34:57 +08:00
[Misc] format and refactor some examples (#16252)
Signed-off-by: reidliu41 <reid201711@gmail.com> Co-authored-by: reidliu41 <reid201711@gmail.com>
This commit is contained in:
parent
995e3d1f41
commit
7f00899ff7
@ -90,8 +90,9 @@ def run_simple_demo(args: argparse.Namespace):
|
|||||||
},
|
},
|
||||||
]
|
]
|
||||||
outputs = llm.chat(messages, sampling_params=sampling_params)
|
outputs = llm.chat(messages, sampling_params=sampling_params)
|
||||||
|
print("-" * 50)
|
||||||
print(outputs[0].outputs[0].text)
|
print(outputs[0].outputs[0].text)
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
def run_advanced_demo(args: argparse.Namespace):
|
def run_advanced_demo(args: argparse.Namespace):
|
||||||
@ -162,7 +163,9 @@ def run_advanced_demo(args: argparse.Namespace):
|
|||||||
]
|
]
|
||||||
|
|
||||||
outputs = llm.chat(messages=messages, sampling_params=sampling_params)
|
outputs = llm.chat(messages=messages, sampling_params=sampling_params)
|
||||||
|
print("-" * 50)
|
||||||
print(outputs[0].outputs[0].text)
|
print(outputs[0].outputs[0].text)
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
|||||||
@ -61,6 +61,7 @@ def process_requests(engine: LLMEngine,
|
|||||||
"""Continuously process a list of prompts and handle the outputs."""
|
"""Continuously process a list of prompts and handle the outputs."""
|
||||||
request_id = 0
|
request_id = 0
|
||||||
|
|
||||||
|
print("-" * 50)
|
||||||
while test_prompts or engine.has_unfinished_requests():
|
while test_prompts or engine.has_unfinished_requests():
|
||||||
if test_prompts:
|
if test_prompts:
|
||||||
prompt, sampling_params, lora_request = test_prompts.pop(0)
|
prompt, sampling_params, lora_request = test_prompts.pop(0)
|
||||||
@ -75,6 +76,7 @@ def process_requests(engine: LLMEngine,
|
|||||||
for request_output in request_outputs:
|
for request_output in request_outputs:
|
||||||
if request_output.finished:
|
if request_output.finished:
|
||||||
print(request_output)
|
print(request_output)
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
def initialize_engine() -> LLMEngine:
|
def initialize_engine() -> LLMEngine:
|
||||||
|
|||||||
@ -12,27 +12,36 @@ prompts = [
|
|||||||
# Create a sampling params object.
|
# Create a sampling params object.
|
||||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||||
|
|
||||||
# Create an LLM.
|
|
||||||
llm = LLM(
|
def main():
|
||||||
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
# Create an LLM.
|
||||||
max_num_seqs=8,
|
llm = LLM(
|
||||||
# The max_model_len and block_size arguments are required to be same as
|
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
||||||
# max sequence length when targeting neuron device.
|
max_num_seqs=8,
|
||||||
# Currently, this is a known limitation in continuous batching support
|
# The max_model_len and block_size arguments are required to be same as
|
||||||
# in transformers-neuronx.
|
# max sequence length when targeting neuron device.
|
||||||
# TODO(liangfu): Support paged-attention in transformers-neuronx.
|
# Currently, this is a known limitation in continuous batching support
|
||||||
max_model_len=1024,
|
# in transformers-neuronx.
|
||||||
block_size=1024,
|
# TODO(liangfu): Support paged-attention in transformers-neuronx.
|
||||||
# The device can be automatically detected when AWS Neuron SDK is installed.
|
max_model_len=1024,
|
||||||
# The device argument can be either unspecified for automated detection,
|
block_size=1024,
|
||||||
# or explicitly assigned.
|
# ruff: noqa: E501
|
||||||
device="neuron",
|
# The device can be automatically detected when AWS Neuron SDK is installed.
|
||||||
tensor_parallel_size=2)
|
# The device argument can be either unspecified for automated detection,
|
||||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
# or explicitly assigned.
|
||||||
# that contain the prompt, generated text, and other information.
|
device="neuron",
|
||||||
outputs = llm.generate(prompts, sampling_params)
|
tensor_parallel_size=2)
|
||||||
# Print the outputs.
|
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||||
for output in outputs:
|
# that contain the prompt, generated text, and other information.
|
||||||
prompt = output.prompt
|
outputs = llm.generate(prompts, sampling_params)
|
||||||
generated_text = output.outputs[0].text
|
# Print the outputs.
|
||||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
print("-" * 50)
|
||||||
|
for output in outputs:
|
||||||
|
prompt = output.prompt
|
||||||
|
generated_text = output.outputs[0].text
|
||||||
|
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
|||||||
@ -22,31 +22,40 @@ prompts = [
|
|||||||
# Create a sampling params object.
|
# Create a sampling params object.
|
||||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||||
|
|
||||||
# Create an LLM.
|
|
||||||
llm = LLM(
|
def main():
|
||||||
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
# Create an LLM.
|
||||||
max_num_seqs=8,
|
llm = LLM(
|
||||||
# The max_model_len and block_size arguments are required to be same as
|
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
||||||
# max sequence length when targeting neuron device.
|
max_num_seqs=8,
|
||||||
# Currently, this is a known limitation in continuous batching support
|
# The max_model_len and block_size arguments are required to be same as
|
||||||
# in transformers-neuronx.
|
# max sequence length when targeting neuron device.
|
||||||
# TODO(liangfu): Support paged-attention in transformers-neuronx.
|
# Currently, this is a known limitation in continuous batching support
|
||||||
max_model_len=2048,
|
# in transformers-neuronx.
|
||||||
block_size=2048,
|
# TODO(liangfu): Support paged-attention in transformers-neuronx.
|
||||||
# The device can be automatically detected when AWS Neuron SDK is installed.
|
max_model_len=2048,
|
||||||
# The device argument can be either unspecified for automated detection,
|
block_size=2048,
|
||||||
# or explicitly assigned.
|
# ruff: noqa: E501
|
||||||
device="neuron",
|
# The device can be automatically detected when AWS Neuron SDK is installed.
|
||||||
quantization="neuron_quant",
|
# The device argument can be either unspecified for automated detection,
|
||||||
override_neuron_config={
|
# or explicitly assigned.
|
||||||
"cast_logits_dtype": "bfloat16",
|
device="neuron",
|
||||||
},
|
quantization="neuron_quant",
|
||||||
tensor_parallel_size=2)
|
override_neuron_config={
|
||||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
"cast_logits_dtype": "bfloat16",
|
||||||
# that contain the prompt, generated text, and other information.
|
},
|
||||||
outputs = llm.generate(prompts, sampling_params)
|
tensor_parallel_size=2)
|
||||||
# Print the outputs.
|
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||||
for output in outputs:
|
# that contain the prompt, generated text, and other information.
|
||||||
prompt = output.prompt
|
outputs = llm.generate(prompts, sampling_params)
|
||||||
generated_text = output.outputs[0].text
|
# Print the outputs.
|
||||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
print("-" * 50)
|
||||||
|
for output in outputs:
|
||||||
|
prompt = output.prompt
|
||||||
|
generated_text = output.outputs[0].text
|
||||||
|
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
|||||||
@ -31,55 +31,62 @@ generating_prompts = [prefix + prompt for prompt in prompts]
|
|||||||
# Create a sampling params object.
|
# Create a sampling params object.
|
||||||
sampling_params = SamplingParams(temperature=0.0)
|
sampling_params = SamplingParams(temperature=0.0)
|
||||||
|
|
||||||
# Create an LLM without prefix caching as a baseline.
|
|
||||||
regular_llm = LLM(model="facebook/opt-125m", gpu_memory_utilization=0.4)
|
|
||||||
|
|
||||||
print("Results without `enable_prefix_caching`")
|
def main():
|
||||||
|
# Create an LLM without prefix caching as a baseline.
|
||||||
|
regular_llm = LLM(model="facebook/opt-125m", gpu_memory_utilization=0.4)
|
||||||
|
|
||||||
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
print("Results without `enable_prefix_caching`")
|
||||||
# that contain the prompt, generated text, and other information.
|
|
||||||
outputs = regular_llm.generate(generating_prompts, sampling_params)
|
|
||||||
|
|
||||||
regular_generated_texts = []
|
# ruff: noqa: E501
|
||||||
# Print the outputs.
|
# Generate texts from the prompts. The output is a list of RequestOutput objects
|
||||||
for output in outputs:
|
# that contain the prompt, generated text, and other information.
|
||||||
prompt = output.prompt
|
outputs = regular_llm.generate(generating_prompts, sampling_params)
|
||||||
generated_text = output.outputs[0].text
|
|
||||||
regular_generated_texts.append(generated_text)
|
|
||||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
|
||||||
|
|
||||||
print("-" * 80)
|
regular_generated_texts = []
|
||||||
|
# Print the outputs.
|
||||||
|
print("-" * 50)
|
||||||
|
for output in outputs:
|
||||||
|
prompt = output.prompt
|
||||||
|
generated_text = output.outputs[0].text
|
||||||
|
regular_generated_texts.append(generated_text)
|
||||||
|
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
# Destroy the LLM object and free up the GPU memory.
|
# Destroy the LLM object and free up the GPU memory.
|
||||||
del regular_llm
|
del regular_llm
|
||||||
cleanup_dist_env_and_memory()
|
cleanup_dist_env_and_memory()
|
||||||
|
|
||||||
# Create an LLM with prefix caching enabled.
|
# Create an LLM with prefix caching enabled.
|
||||||
prefix_cached_llm = LLM(model="facebook/opt-125m",
|
prefix_cached_llm = LLM(model="facebook/opt-125m",
|
||||||
enable_prefix_caching=True,
|
enable_prefix_caching=True,
|
||||||
gpu_memory_utilization=0.4)
|
gpu_memory_utilization=0.4)
|
||||||
|
|
||||||
# Warmup so that the shared prompt's KV cache is computed.
|
# Warmup so that the shared prompt's KV cache is computed.
|
||||||
prefix_cached_llm.generate(generating_prompts[0], sampling_params)
|
prefix_cached_llm.generate(generating_prompts[0], sampling_params)
|
||||||
|
|
||||||
# Generate with prefix caching.
|
# Generate with prefix caching.
|
||||||
outputs = prefix_cached_llm.generate(generating_prompts, sampling_params)
|
outputs = prefix_cached_llm.generate(generating_prompts, sampling_params)
|
||||||
|
|
||||||
print("Results with `enable_prefix_caching`")
|
print("Results with `enable_prefix_caching`")
|
||||||
|
|
||||||
cached_generated_texts = []
|
cached_generated_texts = []
|
||||||
# Print the outputs. You should see the same outputs as before.
|
# Print the outputs. You should see the same outputs as before.
|
||||||
for output in outputs:
|
print("-" * 50)
|
||||||
prompt = output.prompt
|
for output in outputs:
|
||||||
generated_text = output.outputs[0].text
|
prompt = output.prompt
|
||||||
cached_generated_texts.append(generated_text)
|
generated_text = output.outputs[0].text
|
||||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
cached_generated_texts.append(generated_text)
|
||||||
|
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
print("-" * 80)
|
# Compare the results and display the speedup
|
||||||
|
generated_same = all([
|
||||||
|
regular_generated_texts[i] == cached_generated_texts[i]
|
||||||
|
for i in range(len(prompts))
|
||||||
|
])
|
||||||
|
print(f"Generated answers are the same: {generated_same}")
|
||||||
|
|
||||||
# Compare the results and display the speedup
|
|
||||||
generated_same = all([
|
if __name__ == "__main__":
|
||||||
regular_generated_texts[i] == cached_generated_texts[i]
|
main()
|
||||||
for i in range(len(prompts))
|
|
||||||
])
|
|
||||||
print(f"Generated answers are the same: {generated_same}")
|
|
||||||
|
|||||||
@ -19,8 +19,6 @@ SEED = 42
|
|||||||
# because it is almost impossible to make the scheduling deterministic in the
|
# because it is almost impossible to make the scheduling deterministic in the
|
||||||
# online serving setting.
|
# online serving setting.
|
||||||
|
|
||||||
llm = LLM(model="facebook/opt-125m", seed=SEED)
|
|
||||||
|
|
||||||
prompts = [
|
prompts = [
|
||||||
"Hello, my name is",
|
"Hello, my name is",
|
||||||
"The president of the United States is",
|
"The president of the United States is",
|
||||||
@ -29,8 +27,17 @@ prompts = [
|
|||||||
]
|
]
|
||||||
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
||||||
|
|
||||||
outputs = llm.generate(prompts, sampling_params)
|
|
||||||
for output in outputs:
|
def main():
|
||||||
prompt = output.prompt
|
llm = LLM(model="facebook/opt-125m", seed=SEED)
|
||||||
generated_text = output.outputs[0].text
|
outputs = llm.generate(prompts, sampling_params)
|
||||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
print("-" * 50)
|
||||||
|
for output in outputs:
|
||||||
|
prompt = output.prompt
|
||||||
|
generated_text = output.outputs[0].text
|
||||||
|
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
|||||||
@ -85,11 +85,13 @@ sampling_params = SamplingParams(temperature=0)
|
|||||||
|
|
||||||
outputs = ray.get(llm.generate.remote(prompts, sampling_params))
|
outputs = ray.get(llm.generate.remote(prompts, sampling_params))
|
||||||
|
|
||||||
|
print("-" * 50)
|
||||||
for output in outputs:
|
for output in outputs:
|
||||||
prompt = output.prompt
|
prompt = output.prompt
|
||||||
generated_text = output.outputs[0].text
|
generated_text = output.outputs[0].text
|
||||||
print(f"Prompt: {prompt!r}, "
|
print(f"Prompt: {prompt!r}\n"
|
||||||
f"Generated text: {generated_text!r}")
|
f"Generated text: {generated_text!r}")
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
# set up the communication between the training process
|
# set up the communication between the training process
|
||||||
# and the inference engine.
|
# and the inference engine.
|
||||||
@ -120,8 +122,10 @@ assert all(ray.get(llm.collective_rpc.remote("check_weights_changed")))
|
|||||||
# use the updated model to generate texts, they will be nonsense
|
# use the updated model to generate texts, they will be nonsense
|
||||||
# because the weights are all zeros.
|
# because the weights are all zeros.
|
||||||
outputs_updated = ray.get(llm.generate.remote(prompts, sampling_params))
|
outputs_updated = ray.get(llm.generate.remote(prompts, sampling_params))
|
||||||
|
print("-" * 50)
|
||||||
for output in outputs_updated:
|
for output in outputs_updated:
|
||||||
prompt = output.prompt
|
prompt = output.prompt
|
||||||
generated_text = output.outputs[0].text
|
generated_text = output.outputs[0].text
|
||||||
print(f"Prompt: {prompt!r}, "
|
print(f"Prompt: {prompt!r}\n"
|
||||||
f"Generated text: {generated_text!r}")
|
f"Generated text: {generated_text!r}")
|
||||||
|
print("-" * 50)
|
||||||
|
|||||||
@ -32,10 +32,12 @@ if __name__ == "__main__":
|
|||||||
llm.stop_profile()
|
llm.stop_profile()
|
||||||
|
|
||||||
# Print the outputs.
|
# Print the outputs.
|
||||||
|
print("-" * 50)
|
||||||
for output in outputs:
|
for output in outputs:
|
||||||
prompt = output.prompt
|
prompt = output.prompt
|
||||||
generated_text = output.outputs[0].text
|
generated_text = output.outputs[0].text
|
||||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
# Add a buffer to wait for profiler in the background process
|
# Add a buffer to wait for profiler in the background process
|
||||||
# (in case MP is on) to finish writing profiling output.
|
# (in case MP is on) to finish writing profiling output.
|
||||||
|
|||||||
@ -36,11 +36,13 @@ llm = LLM(
|
|||||||
outputs = llm.generate(prompts, sampling_params)
|
outputs = llm.generate(prompts, sampling_params)
|
||||||
|
|
||||||
# all ranks will have the same outputs
|
# all ranks will have the same outputs
|
||||||
|
print("-" * 50)
|
||||||
for output in outputs:
|
for output in outputs:
|
||||||
prompt = output.prompt
|
prompt = output.prompt
|
||||||
generated_text = output.outputs[0].text
|
generated_text = output.outputs[0].text
|
||||||
print(f"Prompt: {prompt!r}, "
|
print(f"Prompt: {prompt!r}\n"
|
||||||
f"Generated text: {generated_text!r}")
|
f"Generated text: {generated_text!r}")
|
||||||
|
print("-" * 50)
|
||||||
"""
|
"""
|
||||||
Further tips:
|
Further tips:
|
||||||
|
|
||||||
|
|||||||
@ -16,14 +16,22 @@ N = 1
|
|||||||
# Currently, top-p sampling is disabled. `top_p` should be 1.0.
|
# Currently, top-p sampling is disabled. `top_p` should be 1.0.
|
||||||
sampling_params = SamplingParams(temperature=0, top_p=1.0, n=N, max_tokens=16)
|
sampling_params = SamplingParams(temperature=0, top_p=1.0, n=N, max_tokens=16)
|
||||||
|
|
||||||
# Set `enforce_eager=True` to avoid ahead-of-time compilation.
|
|
||||||
# In real workloads, `enforace_eager` should be `False`.
|
def main():
|
||||||
llm = LLM(model="Qwen/Qwen2-1.5B-Instruct",
|
# Set `enforce_eager=True` to avoid ahead-of-time compilation.
|
||||||
max_num_batched_tokens=64,
|
# In real workloads, `enforace_eager` should be `False`.
|
||||||
max_num_seqs=4)
|
llm = LLM(model="Qwen/Qwen2-1.5B-Instruct",
|
||||||
outputs = llm.generate(prompts, sampling_params)
|
max_num_batched_tokens=64,
|
||||||
for output, answer in zip(outputs, answers):
|
max_num_seqs=4)
|
||||||
prompt = output.prompt
|
outputs = llm.generate(prompts, sampling_params)
|
||||||
generated_text = output.outputs[0].text
|
print("-" * 50)
|
||||||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
for output, answer in zip(outputs, answers):
|
||||||
assert generated_text.startswith(answer)
|
prompt = output.prompt
|
||||||
|
generated_text = output.outputs[0].text
|
||||||
|
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
|
||||||
|
assert generated_text.startswith(answer)
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
|||||||
@ -1089,14 +1089,18 @@ def main(args):
|
|||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
||||||
elapsed_time = time.time() - start_time
|
elapsed_time = time.time() - start_time
|
||||||
|
print("-" * 50)
|
||||||
print("-- generate time = {}".format(elapsed_time))
|
print("-- generate time = {}".format(elapsed_time))
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
||||||
|
|
||||||
|
print("-" * 50)
|
||||||
for o in outputs:
|
for o in outputs:
|
||||||
generated_text = o.outputs[0].text
|
generated_text = o.outputs[0].text
|
||||||
print(generated_text)
|
print(generated_text)
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
@ -143,8 +143,10 @@ def run_encode(model: str, modality: QueryModality, seed: Optional[int]):
|
|||||||
"multi_modal_data": mm_data,
|
"multi_modal_data": mm_data,
|
||||||
})
|
})
|
||||||
|
|
||||||
|
print("-" * 50)
|
||||||
for output in outputs:
|
for output in outputs:
|
||||||
print(output.outputs.embedding)
|
print(output.outputs.embedding)
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
def main(args: Namespace):
|
def main(args: Namespace):
|
||||||
|
|||||||
@ -644,9 +644,11 @@ def run_generate(model, question: str, image_urls: list[str],
|
|||||||
},
|
},
|
||||||
sampling_params=sampling_params)
|
sampling_params=sampling_params)
|
||||||
|
|
||||||
|
print("-" * 50)
|
||||||
for o in outputs:
|
for o in outputs:
|
||||||
generated_text = o.outputs[0].text
|
generated_text = o.outputs[0].text
|
||||||
print(generated_text)
|
print(generated_text)
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
def run_chat(model: str, question: str, image_urls: list[str],
|
def run_chat(model: str, question: str, image_urls: list[str],
|
||||||
@ -687,9 +689,11 @@ def run_chat(model: str, question: str, image_urls: list[str],
|
|||||||
chat_template=req_data.chat_template,
|
chat_template=req_data.chat_template,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
print("-" * 50)
|
||||||
for o in outputs:
|
for o in outputs:
|
||||||
generated_text = o.outputs[0].text
|
generated_text = o.outputs[0].text
|
||||||
print(generated_text)
|
print(generated_text)
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
|
||||||
def main(args: Namespace):
|
def main(args: Namespace):
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user